

Acute Respiratory Failure

Objectives for pre-Course reading

- Describe the similarities and differences between adults, children and infants' anatomy and their physiological responses to critical illness
- Identify clinical signs of respiratory distress and of impending respiratory failure in pediatric patients

Child vs adult anatomy

Nasal airway precarious : Infants nasal breathers : nasal congestion can obstruct ventilation

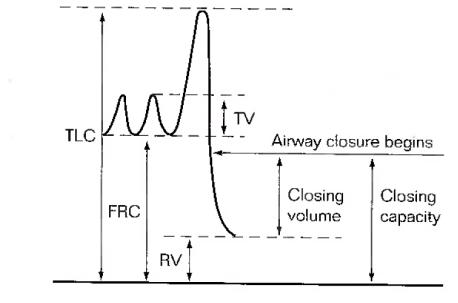
<u>Oral airway challenging :</u> Relatively large tongue, small oropharynx

Airway instrumentation challenging : -high, anterior larynx -large floppy epiglottis -short, compressible trachea Immature respiratory control

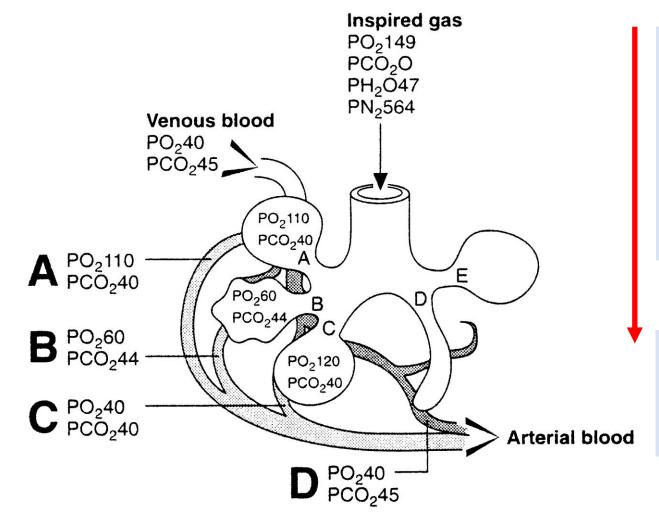
Large head, short neck, prominent occiput

Small airways, little cartilaginous support early in life

Inefficient ventilatory mechanics :


- -horizontal ribs
- -flat diaphragm
- -underdevoped accessory muscles
- -compliance chest >> lungs

FRC / Closing volume in infants



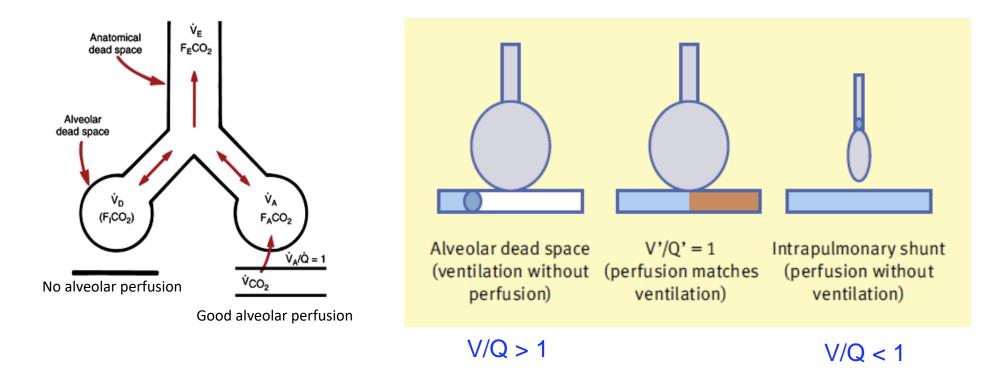
Zero lung volume

Figure 11.6 Static lung volumes and closing lung volumes. Spirogram to demonstrate normal static lung volume nomenclature. The *y* axis is volume and the *x* axis is time during two normal breaths, a maximum inspiration followed by maximal expiration. The closing volumes are included to help one to visualise how the closing volume to FRC ratio may vary as it does between children and adults. TLC – total lung capacity, FRC – functional residual capacity, RV – residual volume, TV – tidal volume. (With permission from Nunn JF 1993; *Applied Respiratory Physiology* Heinemann Educational Publishers; p. 83.)

Ventilation (V) perfusion (Q) relationships in the lung

B VQ mismatchC Diffusion block

D Shunt


A Normal

E Dead space

ALL of these variants of ventilation / perfusion matching may be present in the lungs in varying proportions at any time

Shunt /dead space / V/Q mismatch

May have all present in same patient at same time (bronchiolitis, ARDS)

Child vs Adult anatomy and physiology

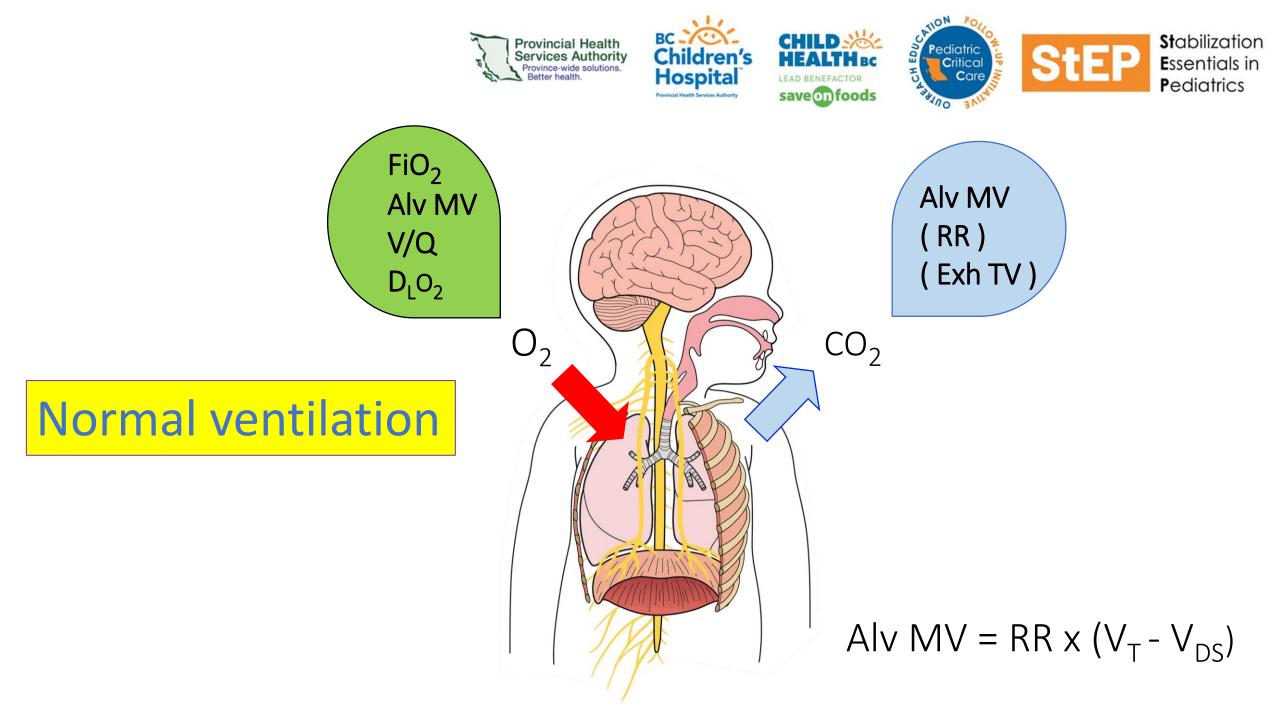
Table 1. Differences in Pediatric and Adult Physiology

Feature	Child	Adult
Airway cartilage formation	Incomplete	Complete
Airway resistance	Greater increase in airway resistance with reduction in airway radius	Smaller increase in airway resistance with reduction in airway radius
Chest-wall compliance	Greater compliance in view of incomplete ribcage ossification	Less compliant in view of ribcage ossification
Alveolar maturation and impact on FRC	20-300 million alveoli (age-dependent); lower FRC	300 million mature alveoli; higher FRC
Respiratory muscle reserve	More reliant on diaphragm	Less reliant on diaphragm
Risk of pulmonary vascular remodeling	Greater due to higher pulmonary vascular resistance during perinatal transition	Lower
Metabolic requirements	Higher	Lower
FRC = functional residual capacity	NormalEdema 1 mm ($R \propto \frac{1}{radius^4}$)Cross- sectional areaInfant($R \propto \frac{1}{radius^4}$) $16x$ 175%	

↑Зх

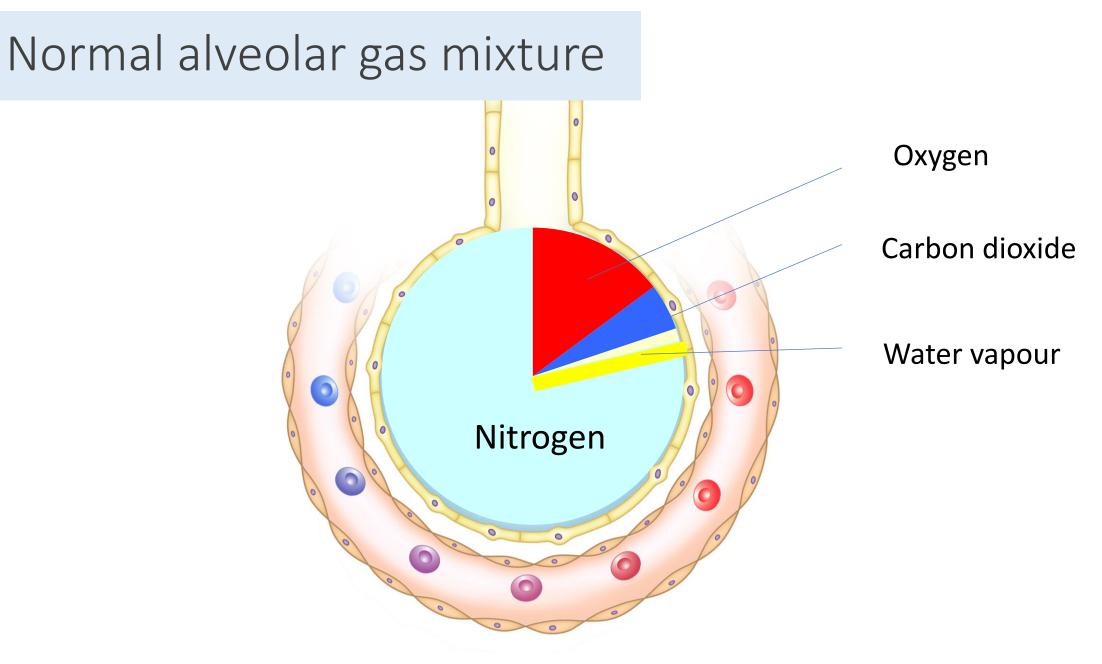
↓44%

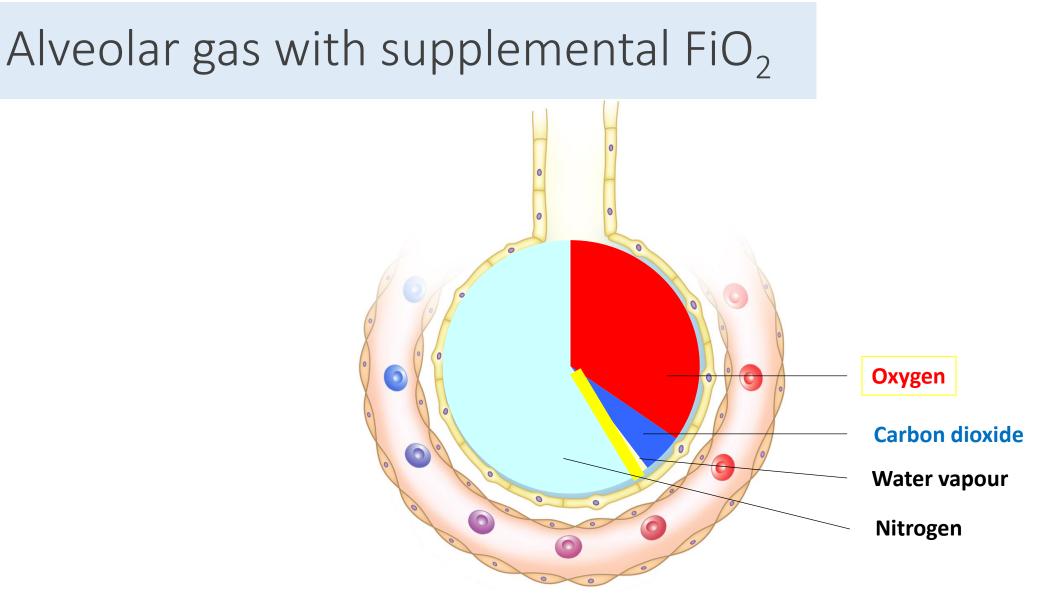
Adult


8 mm ·

.

Infants and children have limited respiratory reserve and decompensate rapidly in the face of respiratory compromise......


Let's review the physiology to understand why



Carbon dioxide removal

- Largely dependent on alveolar ventilation
- Alveolar ventilation = Resp rate X exhaled tidal volume (TV)
- Exhaled TV = Total tidal volume (6-10 ml / Kg)– dead space volume (3 ml / Kg)
- Anatomical dead space is constant
- Physiological dead space variable dependent on VQ matching
- Equipment dead space

Alveolar pressure = $P_AO_2 + P_ACO_2 + P_AH_2O + P_AN_2$

Alveolar pressure = $P_AO_2 + P_ACO_2 + P_AH_2O + P_AN_2$

Alveolar Gas Equation

$$P_AO_2 = [FiO_2 \times (P_{atm} - P_{H2O})] - (P_ACO_2/RQ)$$

 $PACO_2 = PaCO_2$ Resp Quotient (RQ) = 0.8Patm = 760mmHg $P_{H_{2O}} = 47mmHG$

 $P_AO_2 = FiO_2 \times (760 - 47mmHg) - P_aCO_2/0.8$

Practical applications of the Alveolar Gas Equation

Alveolar gas equation: $PAO_2 = FiO_2^*$ (Patm-PH2O) –(PaCO2/RQ)

Breathing in RA

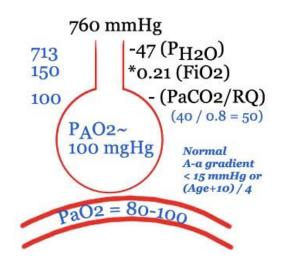
- PaCO2= 40, FiO2 =0.21
- PAO2= 0.21 * (760-47) –(40/0.8) = 150-50 = 100 (measured sat of 100%)
 Breathing 100% O₂
- P_AO₂ = 1.00 x 713 (40/0.8) = 663mmHg (measured sat of 100%)

Rise in PaCO2 from hypoventilation, with consequent hypoxemia

- PaCO2= 80, FiO2= 0.21
- PAO2 = 0.21 (760-47) –(80/0.8) = 150-100 = 50 (measured sat approx 80%)

Hypoxemia from hypoventilation easily overcome with small amount of oxygen

- PaCO2= 80, FiO2= 0.30
- PAO2 = 0.30 (760-47) –(80/0.8) = 213-100 = 114 (measured sat of 100%)


Estimate difference between alveolar partial pressure O₂ (PAO₂) and arterial PaO₂

A-a (O_2) Gradient = $PAO_2 - PaO_2$

- PAO2= (P_{atm}-P_{H2O}) x FiO2 -(PaCO2 / RQ)= (760 47) x 0.21 (40 / 0.8)(713 x 0.21) 50
- PAO2= 149 -50 = 99= 352 60 = 292
- Normal PaO2= 70 –100

Normal A –a gradient= 99 –80 = ~ 20 mm Hg (or **0 –30 mm Hg**) (or Age + 10 /4)

Example : Patient has $PaO_2 60$ on $FiO_2 0.6$ and $PaCO_2$ is 60 $PAO_2 = (713*0.6) - (60/0.8) = 427-75 = 352$ A-a gradient = 352 - 60 = 292

Acute Respiratory Failure

- Hypoxaemic respiratory failure: $PaO_2 \le 60mmHg$ (approxmate
- Hypercarbic respiratory failure: PaCO, ≥ 50mmHg
- Common to have features of both in respiratory failure

Common causes of hypoxemia

- Ventilation perfusion mismatch
- Shunt
- Hypoventilation with high P_aCO₂
- Low inspired FiO₂ altitude
- Alveolar diffusion abnormality rare in children

Common causes of hypoventilation / hypercarbia

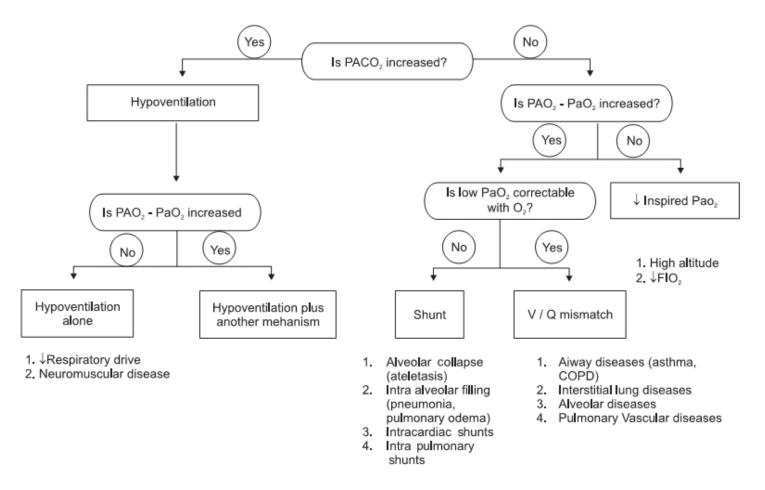
- Hypoventilation from physiological exhaustion from trying to ventilate diseased, non-compliant lungs in infants with inefficient respiratory mechanics : bronchiolitis
- Hypoventilation from CNS depression
 - CNS disease, medication, trauma, vascular
- Hypoventilation due to disease determined weakness
 - Congenital, acquired, medication
- Obstructed airway
- Chest compliance
 - Scoliosis, trauma
- Lung compliance
 - Restrictive lung disease

Types of respiratory failure

HYPOXEMIC

Alveolar O2 V/Q mismatch Diffusion Restriction HbO2

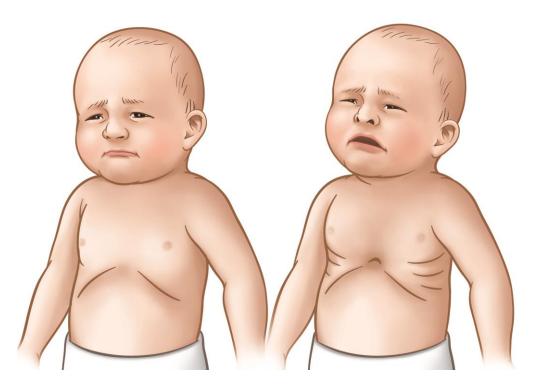
MIXED


Neuromuscular Airway Chest compliance Lung compliance

HYPERCARBIC

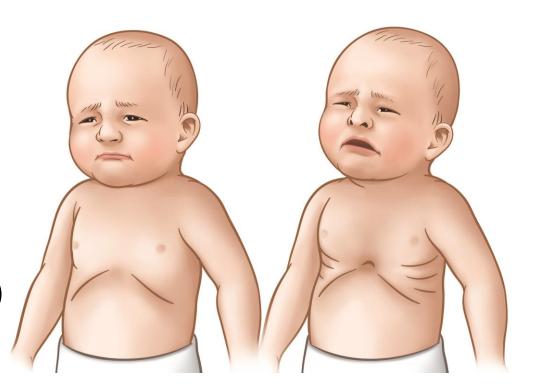
Hypoventilation

Approach to managing hypoxemic respiratory failure



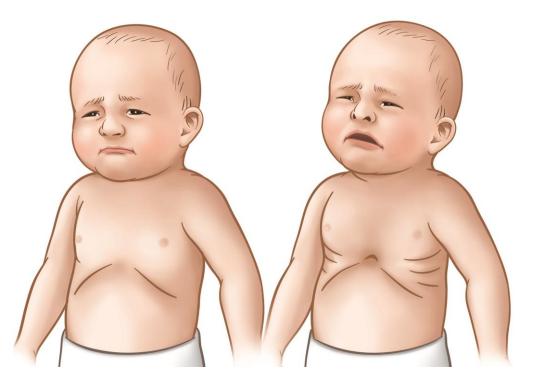
Clinical signs of respiratory distress

1. Respiratory compensation


- Tachypnea
 - Very rapid rates can be seen!
- Noisy breathing
- Work of breathing
 - Accessory muscle use
 - Nasal flaring (increased nasal air flow)
 - Recession/intercostal retractions
 - Grunting (auto-PEEP)
 - Active exhalation with abdo muscles
 - "See-saw" breathing
 - Head bobbing

Clinical signs of respiratory distress

- 2. Sympathetic stimulation
 - Increased HR
 - Increased BP (early)
 - Sweating
- 3. Tissue hypoxia
 - Altered mental state
 - Decreased HR and Decr BP (late)
- 4. Hemoglobin desaturation
 - Cyanosis



Clinical signs of respiratory distress When do we call it failure ?

Frequent clinical reassessments are **key** to recognizing progressive deterioration

Maintaining longitudinal recording of vital signs , oxygen saturations , changes in ventilatory support, blood gases and Xrays may be helpful

Warning signs that the need for ventilation support is approaching

Be concerned if

- Extreme RR (age dependant, > 50-60), apnea/variable pattern
- Cyanosis or SpO₂ < 90%, despite O₂ support
- Rising PaCO₂
- CVS deterioration, bradycardia
- Agitated, confused or comatose
- Deteriorating despite therapy

Summary of pre-Course reading

- Children's anatomy & physiology different from adult's
- Basic respiratory physiology
 - Oxygen uptake
 - CO₂ removal
- Pathophysiology (Shunt, V/Q mismatch, Dead space)
- Frequent assessments, signs of severity and deterioration warning signs
- Treat the cause

Summary of pre-Course reading

- Children's anatomy & physiology different from adult's
- Basic respiratory physiology
 - Oxygen uptake
 - CO₂ removal
- Pathophysiology (Shunt, V/Q mismatch, Dead space)
- Frequent assessments, signs of severity and deterioration warning signs
- Treat the cause

Child vs adult anatomy

Nasal airway precarious : Infants nasal breathers : nasal congestion can obstruct ventilation

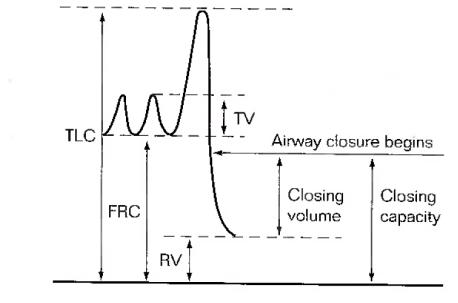
<u>Oral airway challenging :</u> Relatively large tongue, small oropharynx

Airway instrumentation challenging : -high, anterior larynx -large floppy epiglottis -short, compressible trachea Immature respiratory control

Large head, short neck, prominent occiput

Small airways, little cartilaginous support early in life

Inefficient ventilatory mechanics :


- -horizontal ribs
- -flat diaphragm
- -underdevoped accessory muscles
- -compliance chest >> lungs

FRC / Closing volume in infants

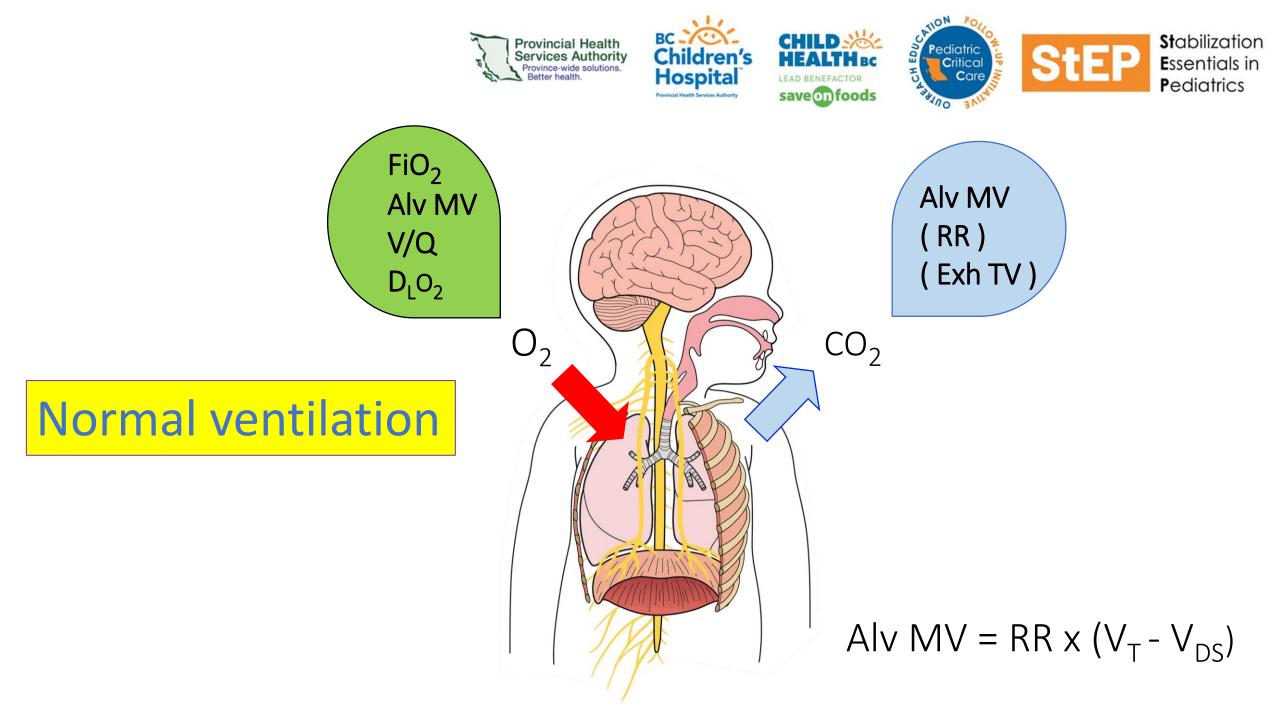
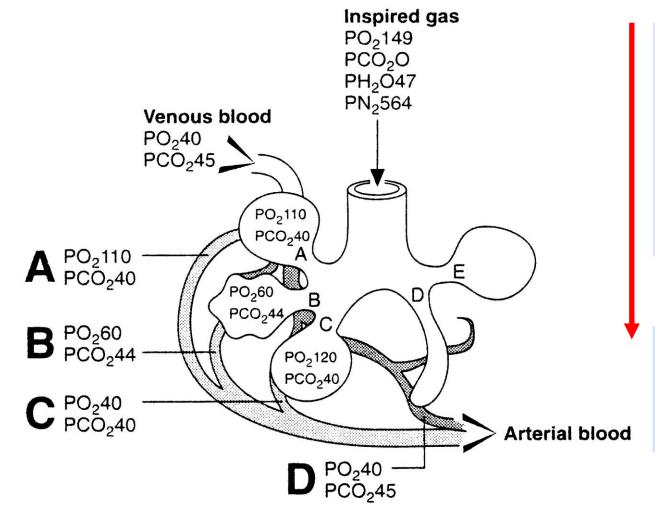

Zero lung volume

Figure 11.6 Static lung volumes and closing lung volumes. Spirogram to demonstrate normal static lung volume nomenclature. The *y* axis is volume and the *x* axis is time during two normal breaths, a maximum inspiration followed by maximal expiration. The closing volumes are included to help one to visualise how the closing volume to FRC ratio may vary as it does between children and adults. TLC – total lung capacity, FRC – functional residual capacity, RV – residual volume, TV – tidal volume. (With permission from Nunn JF 1993; *Applied Respiratory Physiology* Heinemann Educational Publishers; p. 83.)

Summary of pre-Course reading

- Children's anatomy & physiology different from adult's
- Basic respiratory physiology
 - Oxygen uptake
 - CO₂ removal
- Pathophysiology (Shunt, V/Q mismatch, Dead space)
- Frequent assessments, signs of severity and deterioration warning signs
- Treat the cause



Summary of pre-Course reading

- Children's anatomy & physiology different from adult's
- Basic respiratory physiology
 - Oxygen uptake
 - CO₂ removal
- Pathophysiology (Shunt, V/Q mismatch, Dead space)
- Frequent assessments, signs of severity and deterioration warning signs
- Treat the cause

Ventilation (V) perfusion (Q) relationships in the lung

B VQ mismatchC Diffusion blockD Shunt

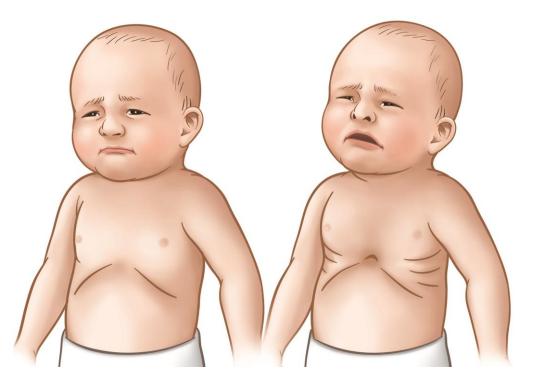
D Shunt

A Normal

E Dead space

ALL of these variants of ventilation / perfusion matching may be present in the lungs in varying proportions at any time

Summary of pre-Course reading


- Children's anatomy & physiology different from adult's
- Basic respiratory physiology
 - Oxygen uptake
 - CO₂ removal
- Pathophysiology (Shunt, V/Q mismatch, Dead space)
- Frequent assessments, signs of severity and deterioration warning signs
- Treat the cause

Clinical signs of respiratory distress When do we call it failure ?

Frequent clinical reassessments are **key** to recognizing progressive deterioration

Maintaining longitudinal recording of vital signs , oxygen saturations , changes in ventilatory support, blood gases and Xrays may be helpful

Warning signs that the need for ventilation support is approaching

Be concerned if

- Extreme RR (age dependant, > 50-60), apnea/variable pattern
- Cyanosis or SpO₂ < 90%, despite O₂ support
- Rising PaCO₂
- CVS deterioration, bradycardia
- Agitated, confused or comatose
- Deteriorating despite therapy

Objectives for today :

- Differentiate the presentation of common respiratory pathologies in critically ill pediatric patients :
 - Upper airway obstruction
 - Bronchiolitis
 - Asthma
 - Pneumonia
- Develop physiologically based specific management strategies for those conditions, using **case based** demonstrations

Stabilization Essentials in Pediatrics

Normal HR/RR by age

BC PEWS Vital Signs Reference Card								
Age	Heart Rate Beats per minute	Respiratory Rate Breaths per minute	Systolic / Diastolic BP	MAP mmHg				
0 – 28 days*	104 – 162	31 - 60	60 - 80 / 30 - 53	40 or higher				
1 – 3 months*	104 - 162	31 - 60	73 – 105 / 36 – 68	48 or higher				
4 – 11 months*	109 – 159	29 – 53	82 - 105 / 46 - 68	58 - 80				
1 – 3 years†	89 – 139	25 – 39	85 - 109 / 37 - 67	53-81				
4 – 6 years†	71 – 128	17 – 31	91 - 114 / 50 - 74	63 - 87				
7 – 11 years†	60 - 114	15 – 28	96-121/57-80	70 - 94				
12 plus years†	50 - 104	12 – 25	105-136/62-87	76 - 103				
Temperature °C	Oral: 35.5 – 37.5, Axilla: 36.5 – 37.5, Rectal: 36.6 – 38.0, Temporal: 36.3 – 37.8							

HR and RR ranges: CTAS 2013

Temperature ranges: CPS 2015

BP ranges: *Modified from American Heart Association (2012). *Pediatric emergency assessment, recognition, and stabilization (PEARS) provider manual.*[†] National Heart, Lung and Blood Pressure Institute (2004). The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. *Pediatrics, 114(2),* 555-556.

Stabilization Essentials in Pediatrics

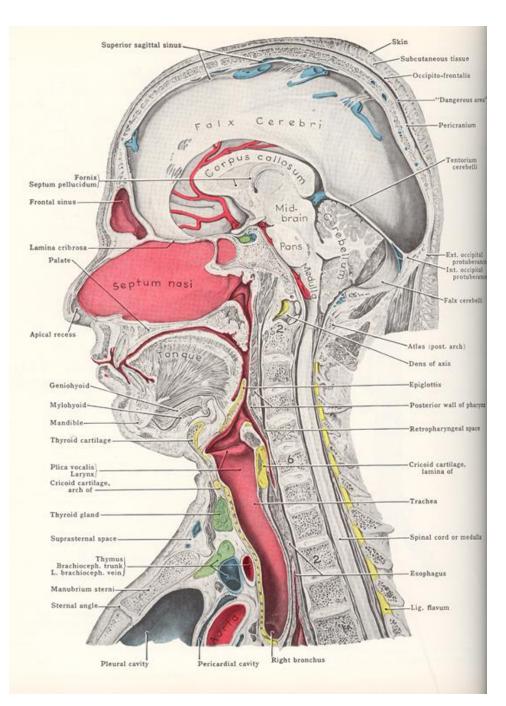
Other useful pediatric pearls

Provincial PEWS Reference Card

Body Weight (kg)	Fluid Requirements Per Day				
Below 10 kg	100 mL per kg				
10 – 20 kg	1000 mL + 50 mL per kg over 10 kg				
Greater than 20 kg	1500 mL + 20 mL per kg over 20 kg				
Body Weight (kg)	Fluid Requirements Per Hour				
Below 10 kg	4 mL per kg				
10 – 20 kg	2 mL per kg for each kg greater than 10 kg				
Greater than 20 kg	1 mL per kg for each kg greater than 20 kg				
Urine Output	0.5 – 1.0 mL per kg per hr				

Pickard, G. & Abernathy, A.P. (2013). Dosoge calculations, Ninth edition. Delmar, Congage Learning.

Case #1


- 2 year old boy presented to ED with moderate to severe work of breathing, saturation in low 80s. Inspiration prolonged and associated with loud stridor. Regular loud barking cough.
 - Started on O2 via non-rebreather mask at 10L/min.
 - Given epinephrine neb with immediate improvement in WOB and resolution of stridor
 - Given oral dexamethasone.
 - After 4 doses of epinephrine at 15-30 min intervals, transient improvement after each. Moderate to severe work of breathing when upset. Stridor at rest goes away post epinephrine neb for 15-30 min. Does not look toxic.
 - VS: Sat 97-97%, RR 45, HR 150, BP 80/35 T38.1
 - Normal CXR and lateral neck x-ray

Worried? Dx? Immediate management?

Upper airway obstruction

- Location: supraglottic, glottic, subglottic
- Can be fixed or variable which will affect type of flow limitation
- May be associated age-related airway dynamics
 - Smaller airways, therefore obstruct more easily with intimal edema
 - Less cartilaginous support and therefore more prone to collapse under pressure differential
- Unless the cause of the obstruction is also causing lung disease, then any hypoxia present is most likely due to hypercarbic hypoxia, and should be corrected by an F_iO_2 30%

(Physiology described in pre-reading for Course)

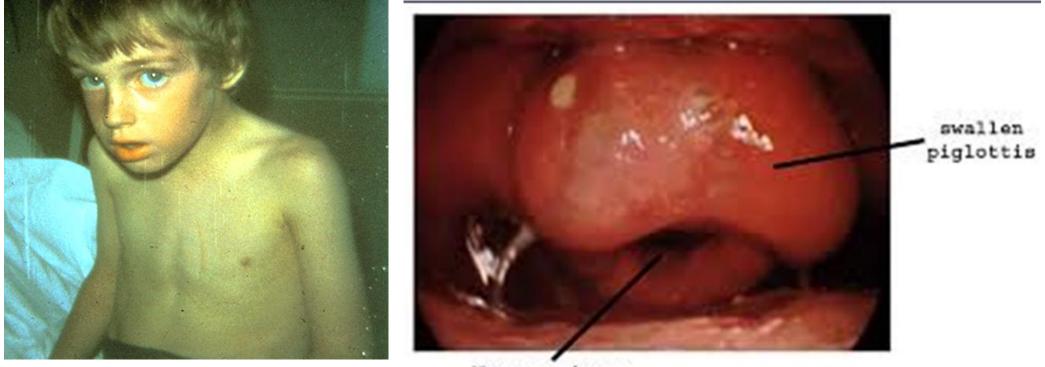
Differential diagnosis

Grouped by level of obstruction

- Supraglottic
 - Epiglottitis
 - Tonsillitis
 - Retropharyngeal abscess
- Glottic
 - External trauma, burns
 - Postinstrumentation
- Subglottic
 - Croup
 - Bacterial tracheitis
 - Mediastinal tumours
- Multilevel
 - Foreign body
 - Anaphylaxis
 - Decreased LOC

Table 5-3. Clinical Features of Acute Upper Airway Disorders

	Supraglottic Disorders	Subglottic Disorders
Stridor	Quiet and wet	Loud
Voice alteration	Muffled	Hoarse
Dysphagia	+	
Postural preference*	+	-
Barky cough	-	+ especially with croup
Fever	+	+ usually in croup
Toxicity	+	_
Trismus	 + usually in peritonsillar abscess 	
Facial edema	_	+ usually with angioedema


*Epiglottis: patient characteristically sits bolt upright, with neck extended and head held forward; retropharyngeal abscess: child often adopts opisthotonic posture; peritonsillar abscess: child may tilt head toward affected side.

From Davis HW, Gartner JC, Balvis AG, et al. Acute upper airway obstruction: croup and epiglottitis. Pediatr Clin North Am 1981; 28:859.

Acute epiglottitis

- Disease now virtually eradicated in the pediatric population who have been immunised to BC standard
 - Used to be most commonly caused by Hemophilus influenzae Type B (HIB)

Narrow airway

Acute epiglottitis

Stabilization Essentials in Pediatrics

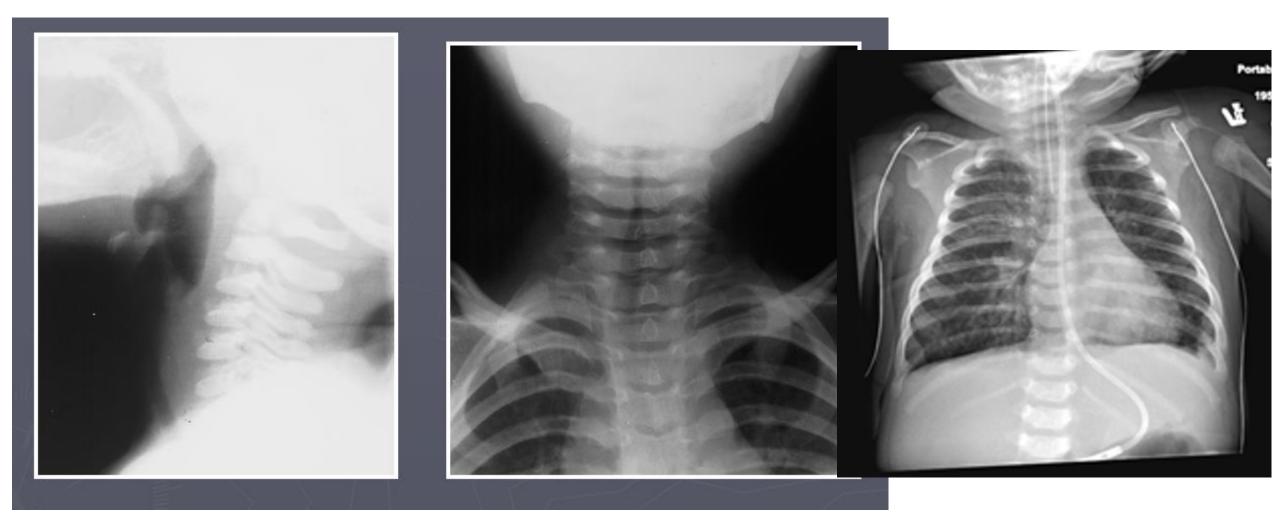


Stabilization Essentials in Pediatrics

Acute epiglottitis vs croup

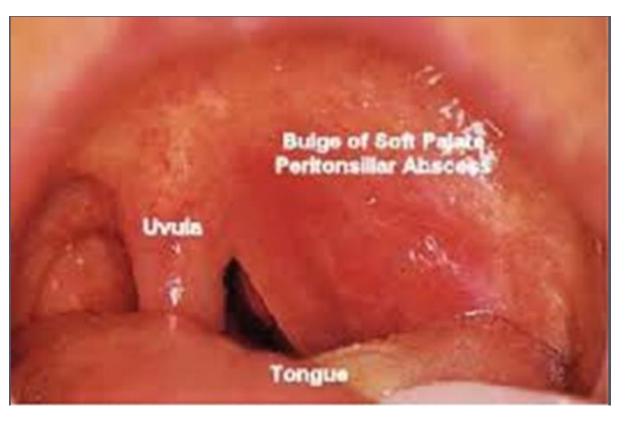
Figure 4-14

Acute epiglottis. Upright lateral radiograph shows distension of the hypopharynx, and edema of the epiglottis and aryepiglottic folds. The cervical curvature is reversed as the child's head is held forward.



Stabilization Essentials in Pediatrics

Croup (= acute laryngotracheobronchitis)



Stabilization Essentials in Pediatrics

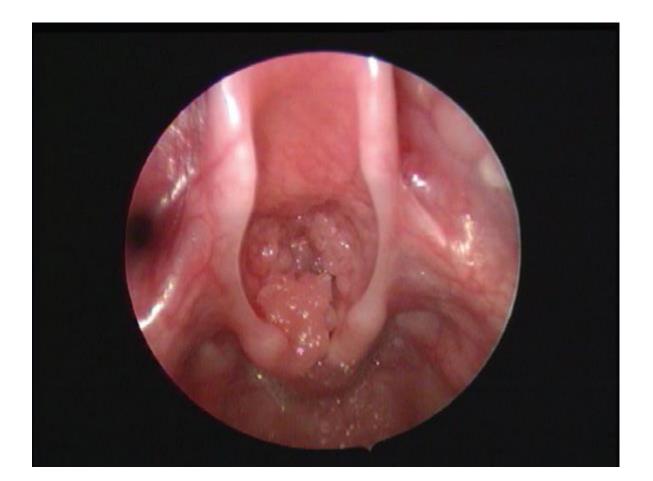
Retropharyngeal abscess

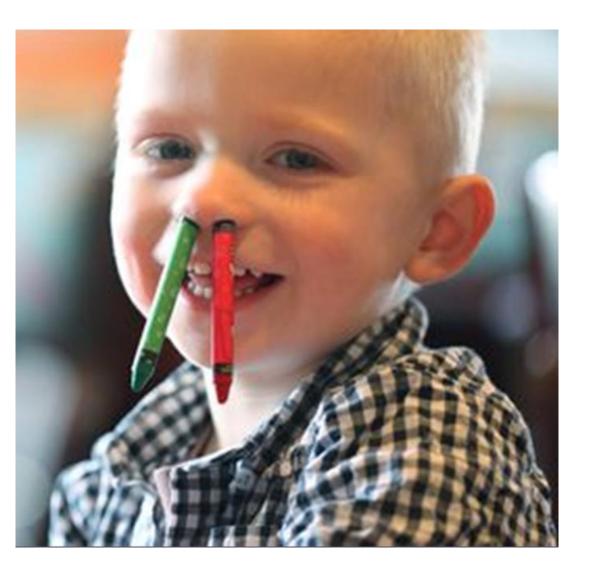
Stabilization Essentials in Pediatrics

Retropharyngeal abscess

Figure 4-12

Retropharyngeal abscess. The airway is displaced anteriorly and to the left (*arrow*) by two hypointense masses that appear to have a hyperintense rim. This retropharyngeal abscess was drained surgically.


Bacterial tracheitis


Foreign bodies

Stabilization Essentials in Pediatrics

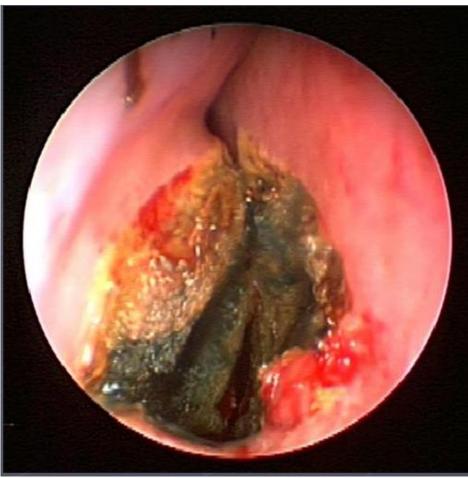
Pediatrics is fun dad.....

Foreign bodies

Stabilization Essentials in Pediatrics

Foreign bodies

Stabilization Essentials in Pediatrics



Foreign bodies

Sometimes removing the FB cannot be left until the morning

Hypercarbic hypoxia

- Hypercarbic hypoxemic failure can be completely corrected with 30% FiO2
- Alveolar gas equation
 - PAO2= PiO2- PaCO2/RQ (0.8)
 - PiO2 = FiO2 (Pb-PH20)

Upper airway obstruction without associated lung disease should NOT cause hypoxia.

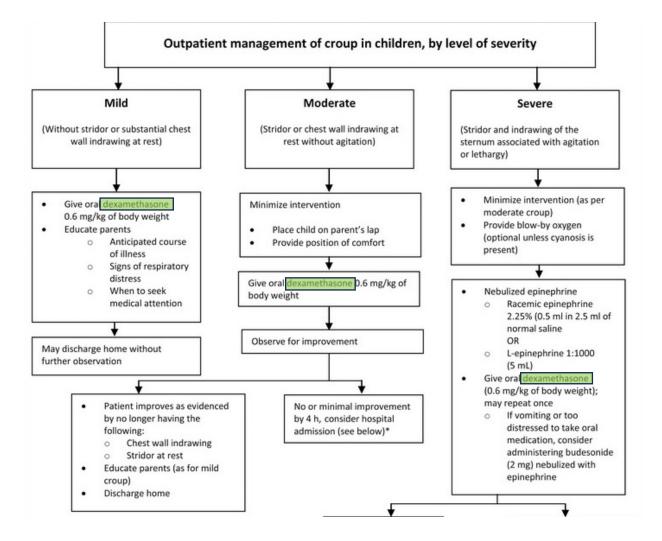
O2 is correcting hypercarbic hypoxia

- Oxygen can be given to improve saturations (!)
- Nebulized epinephrine for temporary relief
- Dexamethasone 0.6 mg/kg
- Heliox = temporizing measure
- Emergency airway management = difficult airway pathway
 - ETT ½ to 1 size smaller
- Treat specific cause

High risk of deterioration and complete obstruction if upset, sedated, repositioned

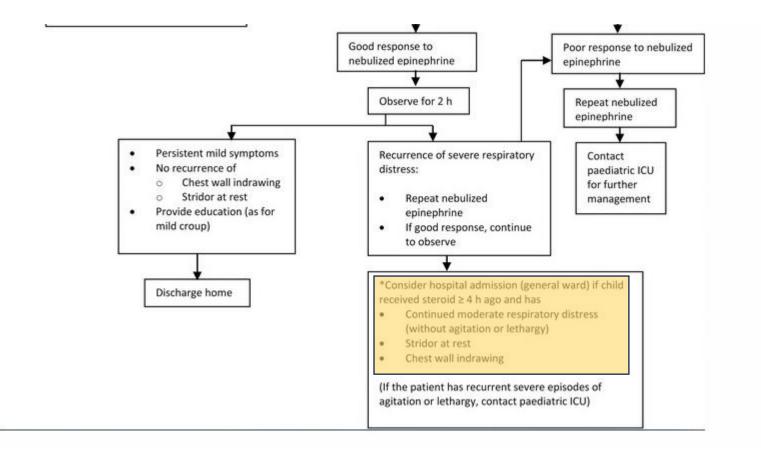
Stabilization

Essentials in


Pediatrics

Delay investigation until airway is secure

Canadian Pediatric Society Guidelines for management of croup in the ER


Paediatr Child Health 22(3):166-169

Canadian Pediatric Society Guidelines for management of croup in the ER

Paediatr Child Health 22(3):166-169

Recommended reading :

trekk bottom line recommendations for Croup

Reference : https://cms.trekk.ca/wp-content/uploads/2023/11/2023-08-21_BLR_Croup_v4.0_FINAL.pdf

This document is due for a review in 2025 and may be become incorporated into the BCCH Critical Care resources

It has no algorithm as such in this version but has a number of useful "criteria" sections that are not covered in the CPS algorithm :

- Criteria for safe discharge home
- Criteria for hospital admission
- Criteria for transfer to PICU

It also has a more detailed approach to the management of patients at the sicker end of the scale : it is well worth a read

Worst case scenario

Intubation: Indications

- Hypoxia
- Hypercarbia
- Airway patency
- Airway protection
- Tests and procedures

Intubation - preparation

- Personnel : who will intubate, back up?
- Equipment
- Medications
 - Induction
 - Resuscitation drugs/fluids
- Checklist

"Hope for the best, but prepare for the worst"

• Intubating a patient with croup should not be undertaken lightly and ideally should involve prior discussion with the PICU Intensivist, the on-site availability of an experienced pediatric ENT Surgeon and the most experienced "pediatric difficult airway" anesthetist available

🔊 Endotracheal Intubation

BEFORE Intubation

- Assessment
- Equipment
- Checklist
- Preparation
- Medication

In-a-Hurry Summary

Respiratory Equipment

DURING Intubation

- Basic Steps
- Pediatric Endotracheal Intubation Video
- In-a-Hurry Summary

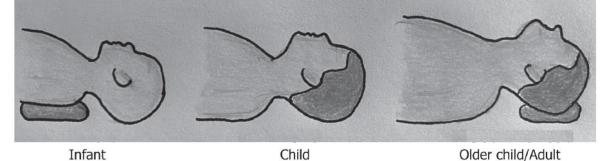
AFTER Intubation

- Confirmation
- Airway Securement
- Ventilation Goals
- Maintenance

In-a-Hurry Summary

~

^

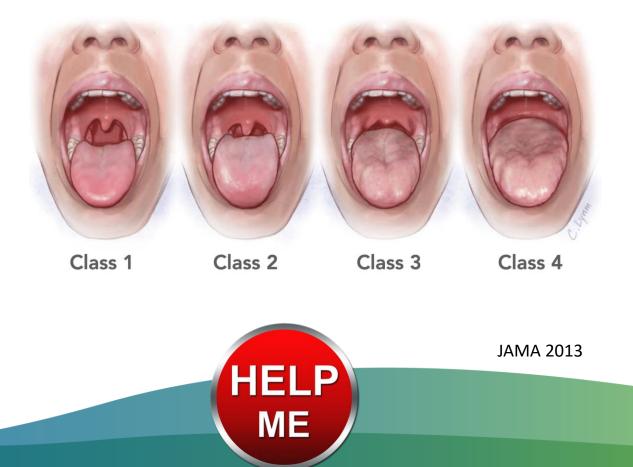

	WEIGHT IN B						ODE CRECOERTOR
	Average AGE for				Children's	Hospital	
	weight (YEARS)	2					
				Resuscitation			
RUG RESOURCES	DRUG	dose/k	g dose	concentration	GIVE	route	additional info
	ADENOSINE	0.1 mg/l	kg 1.2 mg	3 mg/mL	0.4 mL	IV	Max 6 mg. If less than 0.2 mL dilute with NaCl. Rapid push
	CALCIUM CHLORIDE 10%	20 mg/l	kg 240 mg	100 mg/mL	2.4 mL	IV	Max 1000 mg
	CALCIUM GLUCONATE 10%	100 mg/	kg 1200 mg	100 mg/mL	12 mL	IV	60-100 mg/kg/dose. Max 3000 mg
	DEXTROSE (50% glucose)	0.5 g/kg	6 g	0.5 g/mL	12 mL	IV	Dilute 1:1 with sterile water. Max 50 mL Max 200 mg/kg/min
Weight-based Drug Sheets	DEXTROSE (10% glucose)	0.5 g/kg	6 g	0.1 g/mL	60 mL	IV	Max 250 mL. Max 200 mg/kg/min
	EPINEPHRINE (Resusc)	10 mcg/	/kg 120 mcg	0.1 mg/mL	1.2 mL	IV	0.1 mg/mL = 100 mcg/mL; Check strength
	EPINEPHRINE (low dose push)	1 mcg/	/kg 12 mcg	0.01 mg/mL	1.2 mL	IV	0.01 mg/mL = 10 mcg/mL; Not a standard concentration, needs to be mixed
=	3% SODIUM CHLORIDE	5 mL/k	kg 60 mL	0.514 mmol/mL	60 mL	IV	Max 300 mL. Give over 10 min
Drug Formulary	MANNITOL (20%)	1 g/kg	12 g	0.2 g/mL	60 mL	IV	Max 50 g. Filter required. Push over 3-5 min
	NALOXONE	0.1 mg/	kg 1.2 mg	0.4 mg/mL	3 mL	IV/IM	Max 2 mg/dose. Push over 30 sec. Repeat q 2 min PRN
	In the contract	NALOXONE 0.1 mg/kg 1.2 mg 0.4 mg/mL 3 mL IV/IM q 2 min PRN Intubation Medications					
	DRUG	dose/k	g dose	concentration	GIVE	route	additional info
BCCH Empiric Antimicrobial Guide	KETAMINE	1 mg/)	kg 12 mg	10 mg/mL	1.2 mL	IV	Push over 1 min
- '	ROCURONIUM	1 mg/)	kg 12 mg	10 mg/mL	1.2 mL	IV	Push over 5 sec
	FENTANYL	1 mcg/	/kg 12 mcg	50 mcg/mL	0.24 mL	IV	1-2 mcg/kg/dose range. Max 50 mcg. Push over 3-5 min
				Igesia & Sedation			•
Circtling Ann (Antimicrobiola)	DRUG	dose/k	g dose	concentration	GIVE	route	additional info
Firstline App (Antimicrobials)	KETAMINE	1 mg/l	kg 12 mg	10 mg/mL	1.2 mL	IV	Can repeat dose. Push over 1 min
	MORPHINE	0.05 mg/l	kg 0.6 mg	10 mg/mL	0.06 mL	IV	Max 5 mg. Push over 5 min
	MIDAZOLAM	0.05 mg/l	kg 0.6 mg	5 mg/mL	0.12 mL	IV	Max 8 mg. Push over 2 min
			Anaphylaxis				
	DRUG	dose/k	g dose	concentration	GIVE	route	additional info
	EPINEPHRINE	0.01 mg/l	kg 0.12 mg	1 mg/mL	0.12 mL	IM	Max 0.5 mg/dose 0.01 mg/kg = 10 mcg/kg
		Seizures					
	DRUG	dose/k	g dose	concentration	GIVE	route	additional info
	LevETIRAcetam	60 mg/l	kg 720 mg	100 mg/mL	7.2 mL	IV	Max 4500 mg. Refer to parenteral manual f administration instructions
	PHENYTOIN	20 mg/l	kg 240 mg	50 mg/mL	4.8 mL	IV	Max 1500 mg. Refer to parenteral manual f administration instructions
	PHENOBARBITAL	20 mg/l		120 mg/mL	2 mL	IV	Max 1000 mg. Refer to parenteral manual administration instructions
	LORAZEPAM	0.1 mg/l		4 mg/mL	0.3 mL	IV	Max 4 mg. Refer to parenteral manual for administration instructions
	LONAL PART	0.1 118/1		4 mg/mz	v.a mL		

WEIGHT in kg

12

PEDIATRIC MEDICATIONS DOSE CALCULATOR

SOAP ME STABLE



- Suction: preferably Yankauer suction, with the suction turned on and working
- **O**xygen: flowing at an appropriate rate for pre-oxygenation
- Assistant:
- **P**osition: sniffing position to optimize laryngeal view
- Monitoring: SaO2, ETCO2 (continuous), ECG, NIBP, stethoscope, crash cart
- **E**nvironment: room to move, equipment within reach
- **S**trapping/taping: to secure ETT, cut and ready
- Therapeutics: induction and emergency drugs, fluids
- Adjuncts (airway): OPA, NPA, bougie, LMA
- **B**ag and mask: right size, pressure tested +/- manometer
- Laryngoscope: 2 tested and working laryngoscopy +/- videolaryngoscope
- Endotracheal tube: appropriate size and one size below, preferably cuffed, stylet ALWAYS

Predictors of difficult airways

- Dysmorphic facial features / syndromes
- Mallampati grade 3-4
- Stridor/UAO
- Physical features:
 - Limited mouth opening
 - High arch or narrow palate
 - Small mandible
 - Short/wide neck
 - Limited head and neck range of motion

Case #2

- 10 months old baby presented to ED with 4/7 rhinorrhea and cough and 1/7 WOB. On arrival sats 88% on RA. He has been started on LFNC with good response in his sats.
 - VS: RR 70 , Sat 92% on 2L/min LFNC, HR 140s, BP 70/35, T 38.2
 - Gas: 7.30-58-23 lactate 1.5
 - Exam: moderate WOB with supra-sternal and subcostal retractions, wheeze, good air entry, normal LOC/activity. "Happy wheezer"

Worried? Dx? Immediate management?

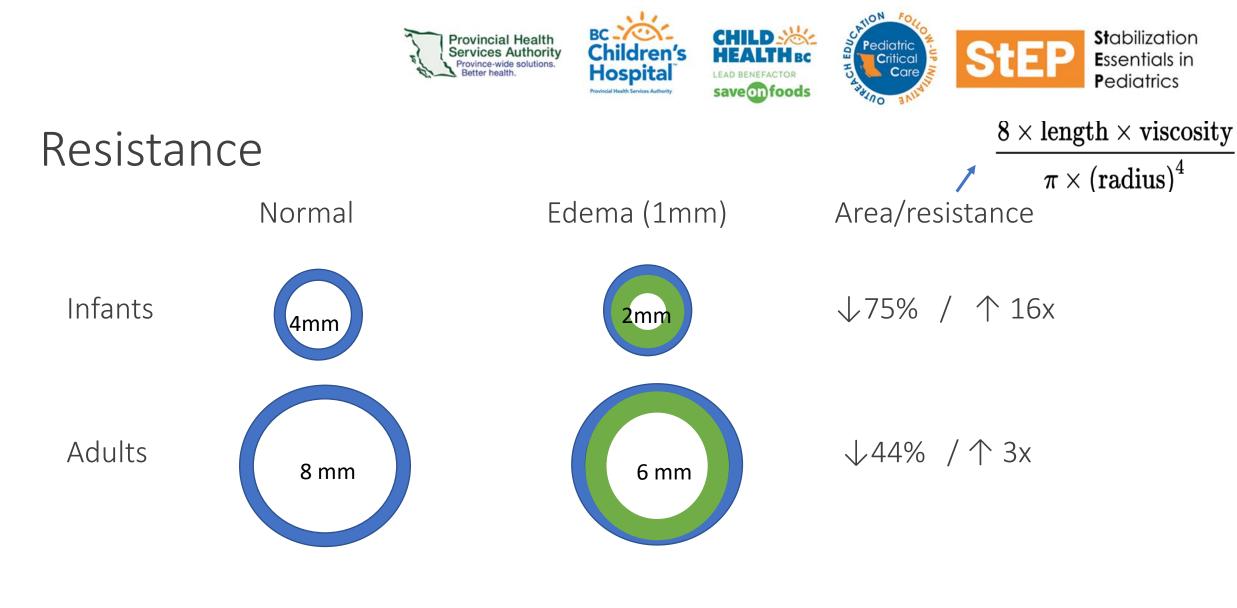
Bronchiolitis

Stabilization Essentials in Pediatrics

- RSV most common pathogen, but can be caused by a plethora of viruses
- Diagnosis is clinical, made on history and physical examination
- Management is supportive
 - Hydration (enteral>IV), avoid fluid overload
 - Oxygenation/ventilatory support

Severity factors:

- Apnea
- Respiratory acidosis
- Altered LOC/hypotonia
- Persistent hypoxemia
- Impending respiratory failure
 - Age: < 6 weeks
 - Prematurity
 - Chronic lung disease
 - Congenital heart disease
 - Neuromuscular disorders
 - Immunodeficiency


Recommended reading : https://www.childhealthbc.ca/sites/default/files/Bronchiolitis-Less-is-Best-V1-2023%20%281%29.pdf

Case #2 continued

- You have decided to start this child on HFNC 2L/kg/min FiO2 30% for his WOB and mild respiratory acidosis.
- Saturations and RR/WOB have improved.
- The resident asks you why do infants get so sick with RSV and adults only get a cold?

Case #2 Continued

- Despite an initial improvement, the patient deteriorated overnight and was initiated on BiPAP.
- Despite BiPAP he has continued to deteriorate. On assessment this morning
 - VS: HR 180, BP 70/35 (45), CR 3-4 sec, RR 65, sat 95%
 - Gas 7.31-50-17 lactate 3.2

Bronchiolitis-Management

- Symptomatic management: oxygen, hydration
- No medication recommended routine
 - B2-agonists "trial" no longer be considered
 - Antibiotics can be considered if strong suspicion/evidence of secondary bacterial pneumonia
- Respiratory support: HFNC, NIV, IPPV
 - Respiratory toilet: suctioning
 - Low respiratory rate/optimize expiratory time for obstructive lung disease (if sedated/paralyzed)
 - Permissive hypercapnia

Case # 2 Continued

- The patient continued to deteriorate despite optimising BiPAP
- Central apnea became a significant problem requiring frequent intervention.
- He was intubated without complication and stabilised on PRVC ventilation

Extrapulmonary manifestations that may accompany bronchiolitis

Extra-pulmonary manifestations

- CNS: central apnea (seizures, encephalopathy)
- CVS: myocarditis, arrhythmias, pericarditis, pHTN
 - Liver: transaminitis
 - Endocrine: SIADH

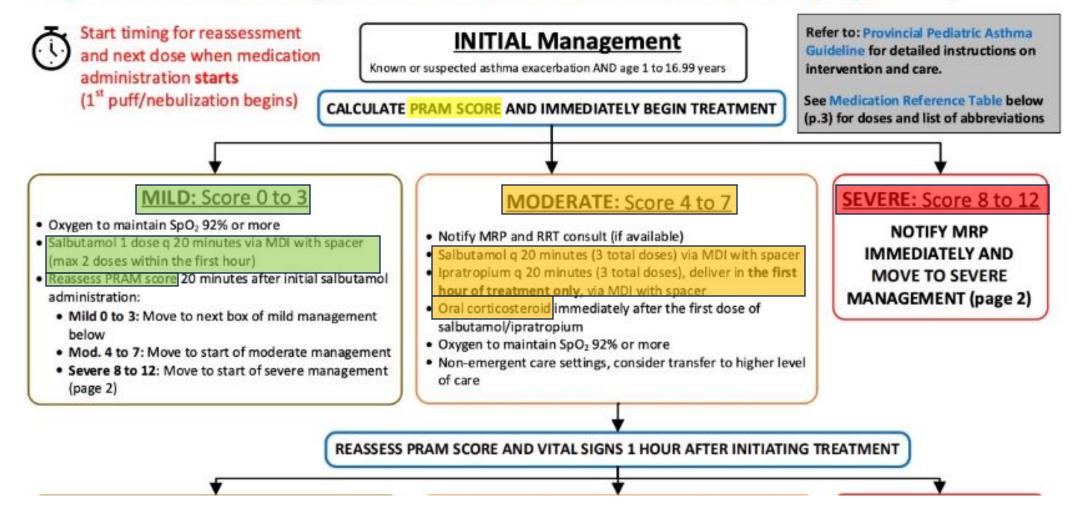
Case #3

- 4 year old boy with history of asthma. 2/7 rhinorrhea/cough. 1/7 WOB on Ventolin q4h at home. On admission sats in low 80s, severe WOB. Started on the asthma protocol.
 - Has received btb Ventolin/Atrovent x3, dexamethasone po, MgSo4 IV, methylpred IV and is now on Ventolin q 30 min via nebulizer
 - On HFNC 2L/kg at 50% FiO2. Sats 92-94%. RR 30. HR 130-140 bpm. BP 85/42
 - The child is asleep in his mother's arm during your examination. You cannot appreciate any wheeze, but note diminished air entry throughout. There is moderate-severe WOB.
 - 7.2-60-22 lactate 5.2
 - CXR: no pneumothorax, hyperinflated +++

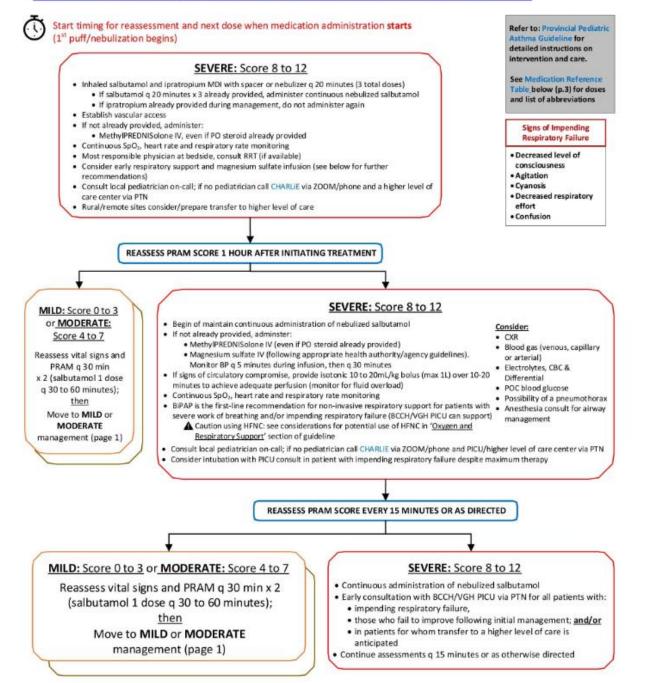
Worried? Dx? Immediate management?

ACUTE CONDITIONS

Acute Agitation		~
Anaphylaxis		~
Asthma		^
 Asthma Recognition Management - Mild to Moderate (PRAM Score 0-7) Management - Severe (PRAM SCORE 8-12) Medication In-a-Hurry Summary 	<section-header><section-header><list-item><list-item><list-item><list-item><section-header><section-header></section-header></section-header></list-item></list-item></list-item></list-item></section-header></section-header>	

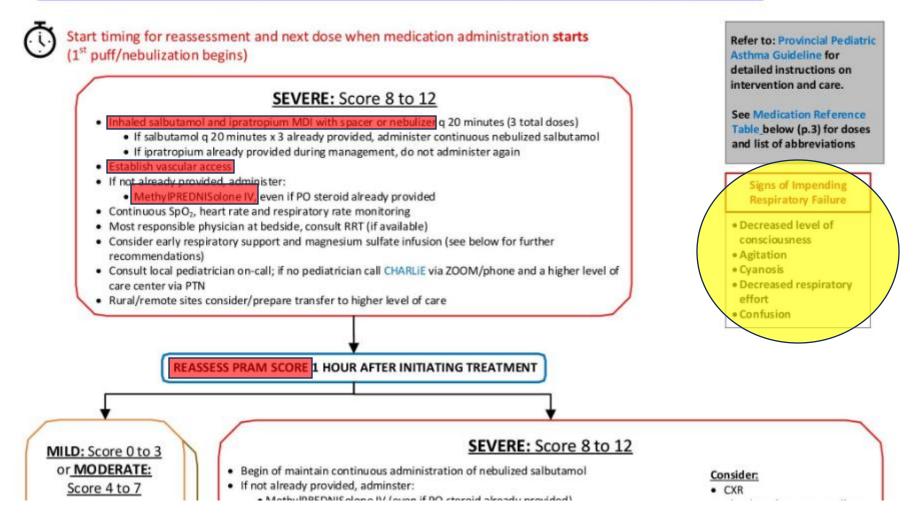

Asthma – In a hurry – Recognition – PRAM Scoring

Oxygen Saturation 0	Description Greater than or equal to 95% 92-94% Less than 92%	Score 0	Notes O ₂ saturation must be measured with the patient breathing ambient air until stabilization of the oximetry value for at least 1 minute.
s	95% 92-94%	-	patient breathing ambient air until stabilization
9		1	
	Less than 92%		Turn off supplementary oxygen when measuring PRAM. If SpO2 falls to less than 92%
L		2	you can turn oxygen back on immediately as they have automatically scored maximum (2) points.
Suprasternal Retraction A	Absent	0	Suprasternal retraction is visible indrawing of the skin above the sternum and between the
Suprastarnal Supractavicular P	Present	2	sterno-cleido-mastoid muscle with every intake of breath.
Intercostal			It may cause an involuntary shoulder shrug in small children.
Subotal			This is a visual assessment.
Scalene Muscle Contraction	Absent	0	The scalenes are deep cervical muscles located
	Present	2	in the floor of the lateral aspect of the neck. Scalene contraction cannot be seen.
			This is a palpable assessment.
			It occurs only in those with severe asthma
			exacerbations. Scalene muscles are bordered on each side by
Scalene Muscle			the sterno-cleido-mastoid muscle, the
Contraction			trapezius (in the back) and the clavicle.
Air Entry	Normal	0	In cases of asymmetry, the most severely affected lung field determines the rating. Use lung fields to grade air entry.
	Decreased at bases	1	Lung field=two contiguous VERTICAL
	Decreased at the apex and the	2	auscultation zones of the major lobes: Posterior lung fields: RUL & RLL or LUL & LLL
	base	2	Right anterior lung field: RUL & RML
			Left anterior lung field: LUL & LLL
	Minimal or absent	3	
Wheezing A	Absent	0	Use auscultation zones to grade wheeze. At least two auscultation zones must be
E	Expiratory only	1	affected to influence the rating.
1	Inspiratory (± expiratory)	2	In case of asymmetry, the two most severely affected auscultation zones, irrespective of their location (BUL, BML, BUL, ULL, BUL, BUL, BUL, BUL, BUL, BU
A	Audible without stethoscope or		their location (RUL, RML, RLL, LUL, LLL), will determine the rating criteria.
	silent chest (minimal or no air entry)	3	
PRAM Score Total	0 – 3 Mild 4	- 7 Mo	oderate 8 – 12 Severe

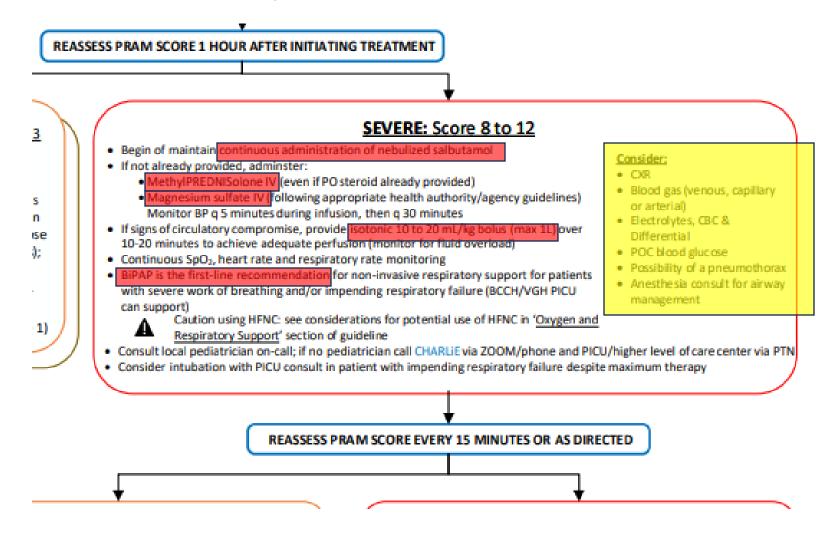

LLL: Left lower lobe LUL: Left upper lobe Oz: Oxygen RLL: Right lower lobe RML: Right middle lobe RUL: Right upper lobe SpOz: Oxygen saturations

Asthma – In a hurry – Management PRAM 0-7

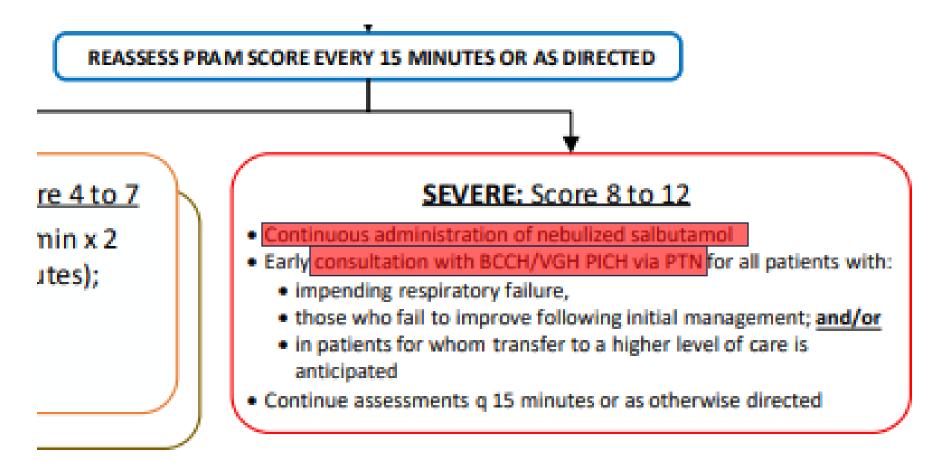
Algorithm: Initial Management of Pediatric Asthma Exacerbations (Page 1 of 3)

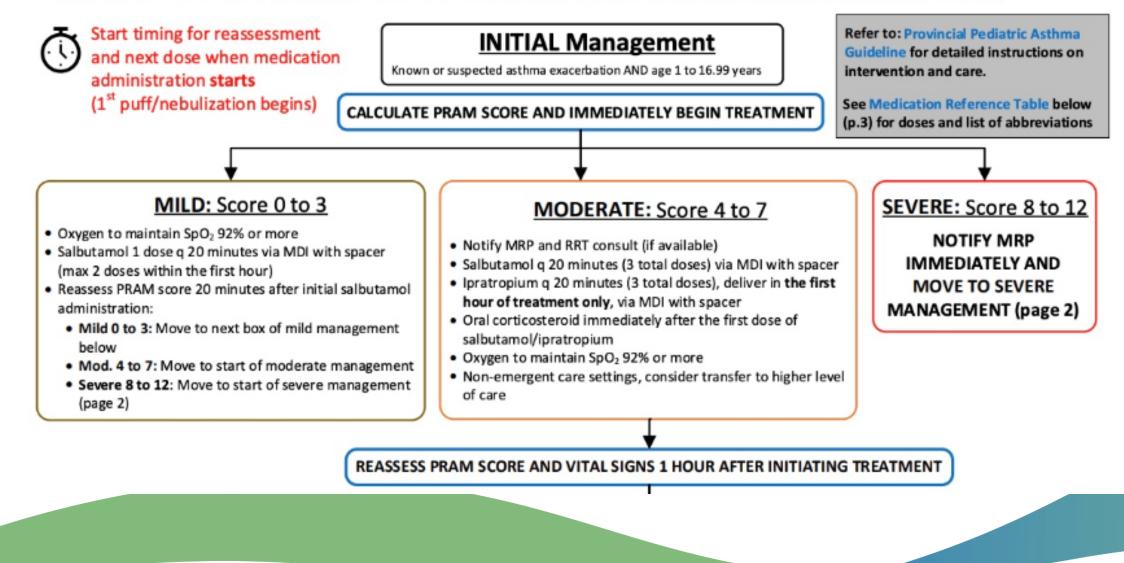


Algorithm: Initial Management of Pediatric Asthma Exacerbations (Page 2 of 3)



Asthma – In a hurry – Management PRAM 8-12


Algorithm: Initial Management of Pediatric Asthma Exacerbations (Page 2 of 3)


Asthma – In a hurry – Management PRAM 8-12

Asthma – In a hurry – Management PRAM 8-12

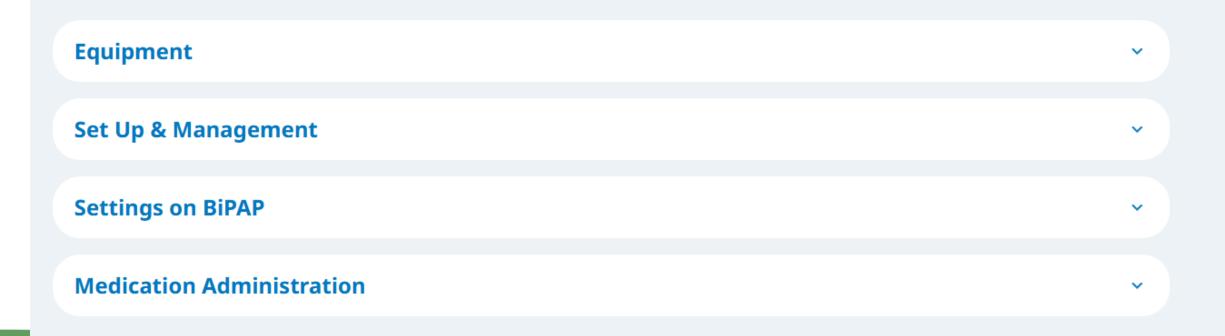
Algorithm: Initial Management of Pediatric Asthma Exacerbations (Page 1 of 3)

Case #3 continued

- You have appropriately identified that this child is in impending respiratory failure and have elected to start BiPAP in the ED and consult PICU.
- The medical student points out that the patient is already hyperinflated, won't BiPAP make him worse?

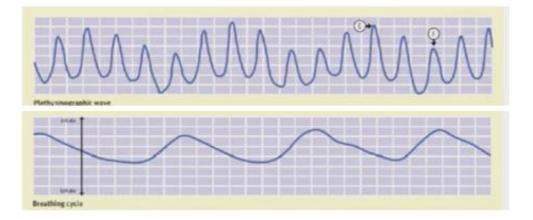
BiPAP and asthma exacerbation

- Delta P = decreases work of breathing
- Hyperinflation = positive pressure in the alveoli
 - PEEP: positive pressure in the airway =
 - Decreases the amount of work necessary to initiate inspiration
 - Stent airways open = helps exhalation
 - Stent alveoli open = helps with V/Q mismatch


Status asthmaticus management

- Advanced therapies
 - IV steroids
 - IV magnesium sulfate (max 75mg/kg total)
 - Continuous salbutamol nebs vs IV infusion
 - Ketamine
 - Inhaled anesthetics
 - Heliox
 - Aminophylline

Pediatric Critical Care In British Columbia / Resources In a Hurry


NON INVASIVE POSITIVE PRESSURE VENTILATION (NIPPV)

Case #3 continued

- Unfortunately, the patient has continued to deteriorate and now has an almost silent chest and is very somnolent.
 - Repeat gas: pH 7.05 CO2 73 lactate 7.5
 - VS: HR 150, BP
- You make the decision to intubate this patient
 - Anticipated complications on intubation?
 - Explanations for shock and lactic acidosis
 - Initial settings on ventilator?

Status asthmatic and shock

- Dehydration = decreased pre-load
- Tachycardia = decreased diastolic RV/LV filling = decreased pre-load
- Effects of positive intra-thoracic pressure / obstructive physiology = affects both pre-load and afterload (next slide)
- Severe acidosis = can affect contractility + risk of arrhythmias
- Salbutamol (B-adrenergic) also causes hyperglycemia and hyperlactatemia

Ventilator settings

<u>Setting</u>	Volume limited mode	Pressure limited mode
<u>Volume or pressure</u>	Set tidal volume (V _T) of; 6-8 ml/kg for children 4-6 ml/kg for neonates	Start at peak inspiratory pressure of 18-20 H_2O . Titrate to chest movement and V_T <10ml/kg
Inspiratory time	Infants: 0.5-0.6 seconds Toddlers: 0.6-0.8 seconds Older children and adolescents: 0.8-1.2	2 seconds
<u>Respiratory Rate</u>	Infants: 30-40/min Toddlers: 25-35/min Pre-school aged children: 20-30/min School aged children: 15-25/min Adolescents: 10-20/min	Low respiratory rate Maximize eTime
Pressure support PEEP	6-12 cm H ₂ O 5-8 cm H ₂ O	"Optimal PEEP" Permissive hypercapnia

- 2 year old girl admitted to the ward for Influenza A pneumonia 2 days ago. Was initially on LFNC 1-2L/min but over the night escalated to HFNC 2L/kg/min with FiO2 up to 80% to maintain sats of 90%. Progressive increase in work of breathing.
 - VS: HR 120, RR 40, Sat 89%, BP 80/35

Case #4

• Gas: 7.25 - 71 - 31 BE -2 Lactate 2.5

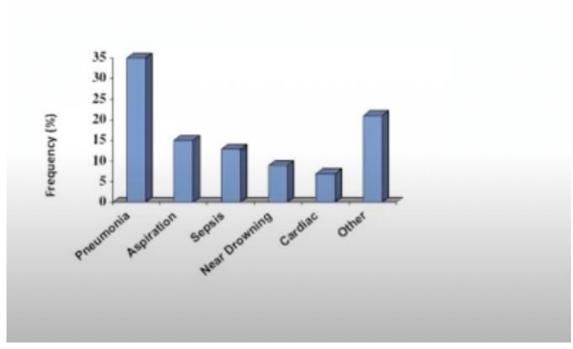
Worried? Dx? Immediate management?

Stabilization Essentials in Pediatrics

pARDS - Definition

Age	Exclude patients with perinatal lung disease
Timing	Within 7 days of known clinical insult
Origin of Edema	Not fully explained by cardiac failure or fluid overload
Oxygenation	IMV: OI \ge 4 or OSI \ge 5 NIV: PaO2/FiO2 \le 300 or SpO2/FiO2 \le 250
CHD/CLD	Acute deterioration not explained by congenital heart disease or chronic lung disease

Oxygenation Index (OI)= MAP/PaO2 Oxygen saturation index (OSI)= MAP/SatO2 Saturation Fraction (SF) = SatO2/FiO2 PALICC-2 2023



Stabilization Essentials in Pediatrics

pARDS-causes

Direct

- Pneumonia
- Aspiration
- Near drowning
- Inhalation
- Traumatic

Indirect

- Sepsis
- TRALI
- Multi-trauma

Fiori et al, AJRCCM 2005

Clinical Presentation

- Rapidly evolving
- Hypoxia
- Respiratory distress
- Hypocarbia then hypercarbia

CXR : diffuse infiltrates, air bronchograms, effusions, atelectasis

Case # 4 continued

- You were appropriately worried about this patient and decided to intubate.
- What are your initial ventilation settings?

BC Children's Hospital Protocial Manda Services Automations

Stabilization Essentials in Pediatrics

Management of ARDS

- Lung-protective ventilation
 - Vt 6-8* ml/kg
 - Moderate PEEP 10-15 titrated to oxygenation/HD
 - Permissive hypercapnia (pH>7.20)
 - Pressure limits
 - Peak : ≤ 32
 - Plateau: ≤28 or <=32 if reduced chest wall compliance
 - Driving: ≤ 15

- Adjunct therapies (limited evidence)
 - Fluid restriction / diuretics
 - Sedation and paralysis
 - Prone positioning
 - Antibiotics
 - iNO (pHTN, RV dysfunction)
 - Steroids
 - Surfactant
 - pRBCs

* Adjust Vt down to 4-6 ml/Kg if > PIP or > DP limits

References

- AAP and CPS Bronchiolitis guidelines
- CPS guidelines for Asthma Exacerbation and Acute management of croup
- NICE Pathways : Bronchiolitis in children : diagnosis and management
- Emeriaud G et al. Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome. PCCM. 2023; 24(2): 143-168
- Franklin D et al. Effects of Early HFNC Oxygen Therapy vs Standard Oxygen Therapy on Length of Hospital stay in Hospitalized Children with Acute Hypoxemic Respiratory Failure. JAMA. 2023; 329(3): 224-234
- Gerke A and Schmidt G. Physiology of Heart-Lung Intersations. Respiratory Medicine Book Series. 2020
- Lumb A.B. Nunn's Applied Respiratory Physiology- 8th Edition. 2016
- Milesi C et al. Clinical practice guidelines: management of severe bronchiolitis in infants under 12 months admitted to a pediatric critical care unit. Intensive Care Med
- Robert H. Bartlett. Critical Care Physiology. Liippincoot Williams and Wilkins, 1996

Questions on anything concerning respiratory failure

