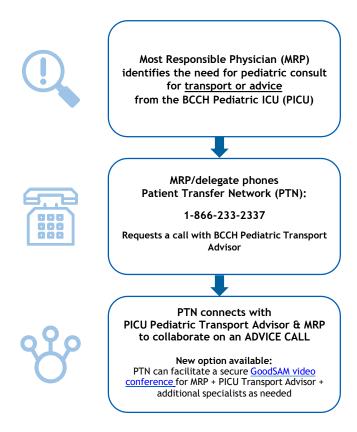


An agency of the Provincial Health Services Authority


Acute Ventilation in Pediatrics

BC Children's Hospital PICU Physicians & Respiratory Therapists

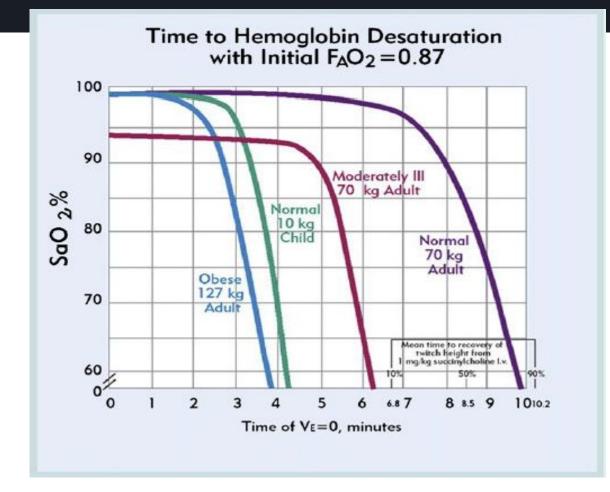
December 16, 2022

PHYSICIAN TO PHYSICIAN CRITICAL CARE SUPPORT FROM BCCH PEDIATRIC INTENSIVE CARE UNIT (PICU)

- Low flow oxygen
- Heated humidified high flow nasal cannula oxygen therapy (HHHFNC)
 - 2L/kg/min
 - maybe useful in some children with bronchiolitis with desaturation not responding to low flow oxygen

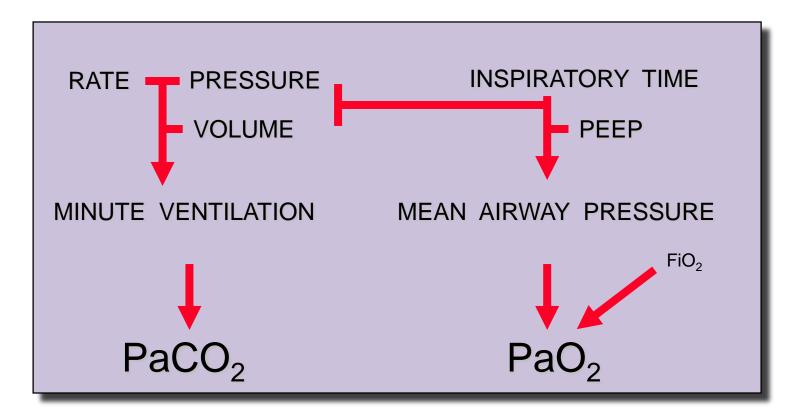
• BiPAP (Bi-level positive airway pressure)

- ventilator delivers an inspiratory positive pressure
- expiration returns to baseline continuous positive end expiratory pressure
- good for oxygenation and ventilation problems
- early initiation in asthma not responding to aggressive medical therapy
- Invasive mechanical ventilation



- Children more prone to respiratory failure
 - greater airways resistance at baseline
 - pliable chest walls predispose to reduced FRC and atelectasis
 - desaturate much quicker with apnea airways close above FRC

Less Time

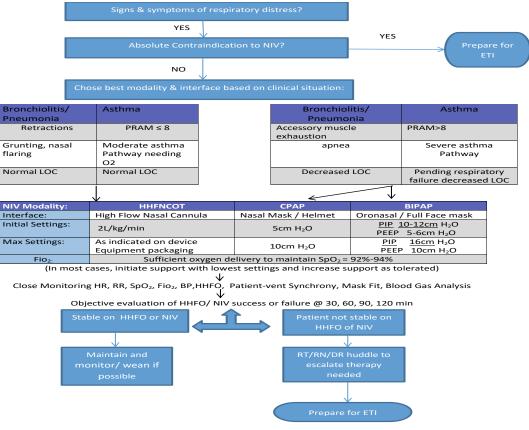


Types of Respiratory Failure

• Oxygenation failure

• Ventilation failure

Oxygenation Support


- simple nasal cannula oxygen
- heated humidified high flow nasal cannula oxygen
- non invasive Bilevel (BiPap)
- invasive MV

Ventilation Support

- non invasive Bilevel (BiPap)
- invasive MV

Decision Tree – Deciding Initial Modality

Adapted from Viscusi C et al. Pediatric Emergency Noninvasive Ventilation Emerg Med Clin N Am 2018;36:387–400

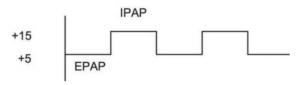
Goal: deliver adequate oxygen flow to meet or exceed the patient's peak inspiratory flow

- establishes control of FiO₂ delivery (as not diluting with room air)
- reduce WOB by supporting inspiratory flow demand
- humidification to optimize secretion clearance
- reduction of upper airway dead space

Flow Recommendations:						
Weight	NHF Flow rates	FPH Mode to use				
0-12 kg	2 liters/min/ kg To a max 25 liters	Junior Mode				
13-15 kg	30 liters/min	Adult mode				
16-30 kg	35 liters/min	Adult Mode				
31-50 kg	40 liters/min	Adult mode				
>50kg	50 liters/min	Adult mode				
	5 liters/min the flow rates are in serve how the flow rates are to					

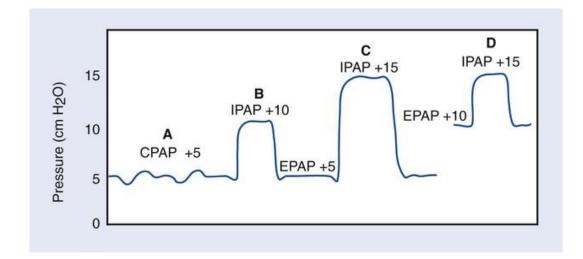
Noninvasive PPV (NIV or BiPAP)

Useful for both oxygenation/ventilation failure


Total face masks allow quick fitting, and eliminate nasal bridge challenges by sealing around the perimeter of the face where patients have less pressure sensitivity and smoother facial contours.

BiPAP is defined as the application of two positive airway pressures

- **EPAP** (expiratory positive airway pressure) = CPAP or PEEP
 - typically start at 5 or 6cmH2O
- IPAP (inspiratory positive airway pressure) upon trigger = peak pressure
 - typically start at 10 or 12cmH2O adjusting to achieve adequate Vt or chest rise, CO₂ clearance, patient comfort
 - IPAP is set independently of EPAP (eg.12/6 offers a pressure gradient of 6)



• Optimize FRC by increasing EPAP, optimize Vt by increasing IPAP

Example: $12/6 \rightarrow 14/7 \rightarrow 16/8 \rightarrow 18/8 \rightarrow 18/10 \rightarrow 20/10 \rightarrow 20/12$

- consider intubation at higher pressures
 - discuss with PICU
- Optimize airway patency
 - positioning/frequent check for mask leak
 - airway suctioning (oropharyngeal, nasopharyngeal),
 - medications such as salbutamol
 - prone positioning
- Optimize patient comfort
 - sedation my be required
 - optimize settings for patient comfort/confirm each breath is triggered and delivered

Infants and children are NOT ventilated like neonates

Vt	6-8mL/kg			
RR	15-30			
Ti	0.6-1.2			
PEEP	5-10			
Target MV	100-200mL/min/kg			
IBW is generally reflected by actual body weight				

	Newborn <1mo	Infant 1mo to 1yo	Toddler 1 to 3yo	Child 3 to 10yo	Adolescent >10yo
Target MV	200mL/min/kg	175mL/min/kg	150mL/min/kg	125mL/min/kg	100mL/min/kg
Vt	7mL/kg	7mL/kg	7mL/kg	7mL/kg	7mL/kg
RR	30	25	22	18-20	15
Ti	0.5-0.6	0.6-0.7	0.7-0.8	0.8-1.0	0.8-1.0

If using lower Vt for lung protection, increase RR to maintain MV Pay attention to I:E ratio if increasing RR

- Normal lungs/acute lung injury
 - lung protective

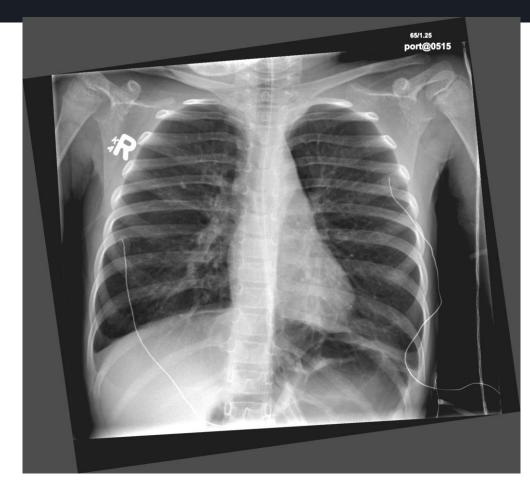
- Obstructive lung disease
 - minimize gas trapping

- Depends on the primary disease process
 - normal lungs
 - airspace disease
 - obstructive disease

- Paralyzed vs spontaneously breathing?
- TV 6-8mls/kg
- PEEP 5-6cm H₂O
- I time/RR age dependent
 - paralyzed (see table)
 - spontaneously breathing determined by the patient
- Reassess patient

- Paralyzed vs spontaneously breathing?
- TV 5-6mls/kg
- PEEP 6-8cm H_2O
 - may increase to 10cm H_2O depends on saturations
- I time/RR age dependent
 - paralyzed (see table)
 - spontaneously breathing determined by the patient
- Reassess patient

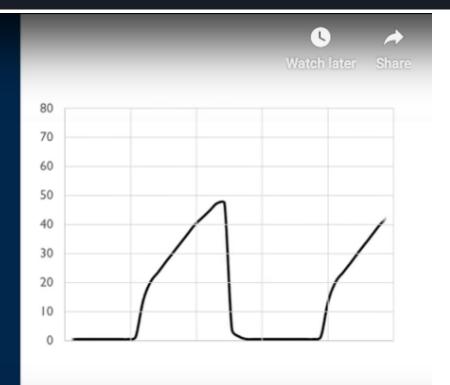
• NIV best initial option


- BiPAP
- Targets
 - avoid worsening gas trapping / offset intrinsic PEEP
 - unload respiratory muscles / reduce resistance to exhalation

Settings

- TV < 8mls/kg
- Long E time/short I time (patient age dependent/set by patient while spontaneously breathing)
 - Observe patient trigger
- EPAP set to match intrinsic PEEP in spontaneously breathing patient
- FIO_2 to maintain sats > 92%

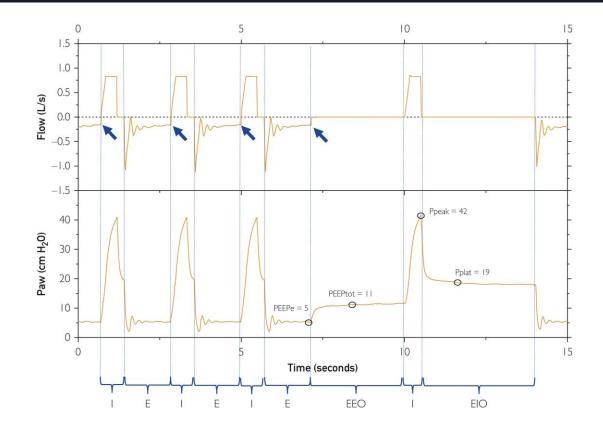
Airway Obstruction Strategy



Capnometry - Obstruction

Waveform Capnography – BAVLS

Obstruction

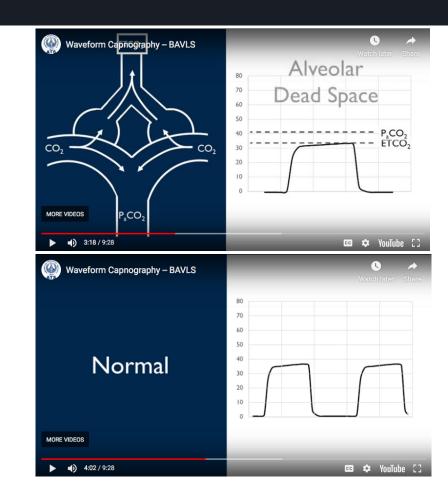

MORE VIDEOS

📼 🌣 YouTube 🖸 🛛 24

Expiratory Flow Obstruction

- Can't ventilate
 - disconnect to manual ventilator with 100% oxygen
 - gentle manual breaths with long expiratory time to allow lung decompression
- Hypotension
 - as for "can't ventilate"
 - give fluid bolus
 - exclude/treat tension pneumothorax
 - bolus IV adrenaline 10mics/kg
- Worsening hypoxemia
 - 100% oxygen/minimize PEEP/minimize gas trapping

- Sedation/analgesia +/- paralysis
- NG to drain the stomach/provide nutrition
 - D5NS routine 75% maintenance until nutrition initiated
 - provide nutrition
- Patient positioning to reduce pressure sores
 - prone positioning for acute lung injury


Monitoring the Patient on MV

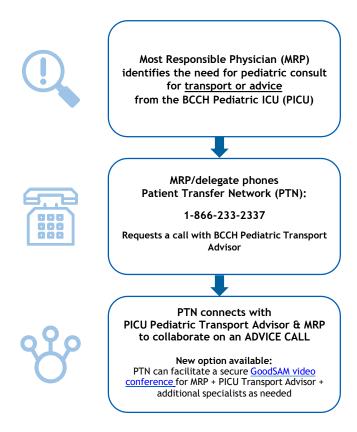
- Clinical exam
 - chest rise equal bilaterally
 - patient ventilator synchrony
- CXR
 - confirm ETT above carina
 - understand disease process
 - identify air leak
- Monitors
 - saturation
 - ETCO₂/transcutaneous CO₂
 - BP/heart rate
 - ventilator waveforms know the basics
 - intermittent blood gases
 - capillary/venous/arterial

Capnography

- **D**isplacement
- Obstruction
- Pneumothorax
- Equipment

- Disconnect from ventilator
 - attach to manual ventilator and manually ventilate with 100% high flow oxygen
 - check ETCO₂

Assess patient using MASH


- chest Movement with bagging
- Arterial saturations?
- **S**kin color?
- Hemodynamic stability?

• Difficult to bag?

- tube or patient?
 - suction down ETT
 - directly check ETT placement through the cords
 - CXR

PHYSICIAN TO PHYSICIAN CRITICAL CARE SUPPORT FROM BCCH PEDIATRIC INTENSIVE CARE UNIT (PICU)

