

An agency of the Provincial Health Services Authority

Pediatric Respiratory Support

BC Children's Hospital PICU Physicians & Respiratory Therapists

March 4, 2025

- Low flow oxygen
- High Flow Nasal Cannula (HFNC) Therapy
 - 2L/kg/min
 - maybe useful in some children with bronchiolitis with desaturation not responding to low flow oxygen
- BiPAP (Bi-level positive airway pressure)
 - ventilator delivers an inspiratory positive pressure
 - expiration returns to baseline continuous positive end expiratory pressure
 - good for oxygenation and ventilation problems
 - early initiation in asthma not responding to aggressive medical therapy
- Invasive positive pressure ventilation

- Children more prone to respiratory failure
 - greater airways resistance at baseline
 - pliable chest walls predispose to reduced FRC and atelectasis
 - desaturate much quicker with apnea airways close above FRC

Less Time

Types of Respiratory Failure

• oxygenation failure

• ventilation failure

combined oxygenation and ventilation failure

Oxygenation Support

- simple nasal cannula oxygen
- high flow nasal cannula (HFNC) therapy
- non invasive ventilation (BiPAP)
- invasive PPV

Ventilation Support

- non invasive ventilation (BiPAP)
- invasive PPV

Goal: deliver an adequate oxygen flow rate to meet or exceed the patient's peak inspiratory flow

- establishes control of FiO₂ delivery (as not diluting with room air)
- reduce WOB by supporting inspiratory flow demand
- humidification to optimize secretion clearance/reduce heat loss
- reduction of upper airway dead space
- predominantly supports oxygenation

Initial Flow Rate for HFNC Therapy is the same for all patients regardless of medical condition

- ≤12Kg: 2 L/kg/minute
- >12Kg: 2 L/kg/minute for the first 12kg + 0.5L/kg/minute for each kg thereafter (max flow 50 L/min)

Increase flow to the prescribed rate over a few minutes, or as tolerated.

Noninvasive PPV (NIV or BiPAP)

Useful for both oxygenation and ventilation failure

Multiple options: nasal/face/full face mask

Total face masks allow quick fitting, and eliminate nasal bridge challenges by sealing around the perimeter of the face where patients have less pressure sensitivity and smoother facial contours.

BiPAP is defined as the application of two positive airway pressures

- 1. IPAP (Inspiratory Positive Airway Pressure)= absolute/total pressure or peak pressure
- 2. EPAP (Expiratory Positive Airway Pressure) = PEEP (Positive End Expiratory Pressure) or CPAP (Continuous Positive Airway Pressure)

Different ventilators use different nomenclature, so it is vital to be aware of the ventilator you are using and the nomenclature associated with the pressure delivery

NIV Terminology

Terminology

1. IPAP (Inspiratory Positive Airway Pressure)

- Typically start at an IPAP of 10 or 12cmH₂O
- Adjusting to achieve adequate tidal volume (Vt) or chest rise, CO₂ clearance, patient comfort
- IPAP is set independently of EPAP
- Interchangeable terminology: peak pressure or total/absolute pressure

2. EPAP (Expiratory Positive Airway Pressure)

- Typically start at 5 or 6cmH₂O
- Interchangeable terminology: PEEP (Positive End Expiratory Pressure) or CPAP (Continuous Positive Airway Pressure)

3. \triangle **P** (Pressure Gradient) = IPAP – EPAP

• IPAP of 15 cmH₂O and EPAP of 5 cmH₂O offers a pressure gradient (ΔP) of 10 cmH₂O

Common noninvasive modes/settings in Hamilton T1

- **1. NIV** (noninvasive ventilation):
 - Every breath is spontaneous
 - Settings: △ Psupport + PEEP/CPAP
 - e.g. \triangle Psupport 6 cmH₂O + PEEP/CPAP 6 cmH₂O
 - = total inspiratory pressure $12 \text{ cmH}_2\text{O}$

- 2. **NIV-ST** (spontaneous/timed noninvasive ventilation):
 - Every breath is spontaneous as long as the patient is breathing above the set rate. A backup rate can be set for mandatory breath
 - Settings: △ Pinsp + PEEP/CPAP, RR
 - e.g. \triangle Pinsp 8 cmH₂O + PEEP/CPAP 8 cmH₂O
 - = total inspiratory pressure 16 cmH₂O

Trilogy Ventilator

Common noninvasive **modes/settings** in Trilogy

- 1. S (Spontaneous):
 - Every breath is spontaneous
 - Settings: IPAP, EPAP
 - e.g. IPAP 12 cmH₂O / EPAP 6 cmH₂O gives ΔP =6 cmH₂O
- 2. **S/T** (**S**pontaneous/**T**imed):
 - Every breath is spontaneous as long as the patient is breathing above the set rate. A backup rate can be set for mandatory breath
 - Settings: IPAP, EPAP, RR
 - e.g. IPAP 18 cmH₂O / EPAP 8 cmH₂O gives $\Delta P = 10$ cmH₂O

- Optimize FRC by increasing PEEP/EPAP, optimize Vt by increasing ΔP or IPAP (absolute pressure)
 - A safe escalation of pressure would be to increase the ΔP or IPAP by 2 cmH₂O each time, and increase the PEEP/EPAP by 1 or 2 cmH₂O
 e.g. (IPAP/EPAP) 12/6 → 14/7 → 16/8 → 18/8 → 18/10 → 20/10 → 20/12
 - Consider intubation at higher pressures
 - Call PICU for advice and support
- Optimize airway patency
 - Positioning/frequent check for mask leak
 - Airway suctioning (oropharyngeal, nasopharyngeal),
 - Medications such as salbutamol
 - Prone positioning
- Optimize patient comfort
 - Sedation may be required
 - NG tube placement prior to initiation reduces gastric distension
 - Optimize settings for patient comfort/confirm each breath is triggered and delivered

Infants and children are NOT ventilated like neonates

Vt	6-8mL/kg			
RR	15-30			
Ti	0.6-1.2			
PEEP	5-10			
Target MV	100-200mL/min/kg			

Age	<1 month	1 mo – 1 yr	1 - 3 yrs	4 - 5 yrs	6 - 10 yrs	> 10 yrs
Target MV (ml/min/kg)	200	175	150	125	125	100
Vt (ml/kg)	6-7	6-8	6-8	6-8	6-8	6-8
RR (br/min)	30 - 35	25-35	20-26	18-24	16-22	14-20
Ti (sec)	0.6	0.6-0.7	0.7-0.75	0.75-0.8	0.8-0.9	0.8-1.0

- When setting Vt, use the lesser of the Ideal/Predicted Body Weight or the Actual Body Weight.
- Monitor and limit driving pressure &/or plateau pressure (plateau < 30cmH2O)
- If using lower Vt for lung protection, increase RR to maintain MV
- Pay attention to I:E ratio if increasing RR

- Normal lungs/acute lung injury
 - lung protective

- Obstructive lung disease
 - minimize gas trapping

- Depends on the primary disease process
 - normal lungs
 - airspace disease
 - obstructive disease

- Paralyzed vs spontaneously breathing?
- TV 6-8mls/kg
- PEEP 5-6cm H_2O
- I time/RR age dependent
 - paralyzed (see table)
 - spontaneously breathing determined by the patient
- Reassess patient frequently

- Paralyzed vs spontaneously breathing?
- TV 5-6mls/kg
- PEEP 6-8cm H_2O
 - may increase to 10cm H₂O or more depending on saturations
- I time/RR age dependent
 - paralyzed (see table)
 - spontaneously breathing determined by the patient
- Reassess patient frequently

- BiPAP best initial option
- Targets
 - avoid worsening gas trapping / offset intrinsic PEEP
 - unload respiratory muscles / reduce resistance to exhalation
- Settings
 - TV < 8mls/kg</p>
 - Long E time/short I time (patient age dependent/set by patient while spontaneously breathing)
 - Observe patient trigger
 - EPAP set to match intrinsic PEEP in spontaneously breathing patient
 - FIO_2 to maintain sats > 92%
- Call PICU for advice and support

Airway Obstruction Strategy

Capnometry - Obstruction

Waveform Capnography - BAVLS

Obstruction

CC

MORE VIDEOS

Expiratory Flow Obstruction

- Can't ventilate
 - disconnect to manual ventilator with 100% oxygen
 - gentle manual breaths with long expiratory time to allow lung decompression and improve venous return
- Hypotension
 - as for "can't ventilate" long expiratory time to improve venous return
 - give fluid bolus
 - exclude/treat tension pneumothorax
 - bolus IV adrenaline 10mcgs/kg
- Worsening hypoxemia
 - 100% oxygen/minimize PEEP/minimize gas trapping

- Sedation/analgesia +/- paralysis
- NG to drain the stomach/provide nutrition
 - D5NS routine 75% maintenance until nutrition initiated
 - provide nutrition
 - BiPAP is NOT a contraindication to feeding by NG
- Patient positioning to reduce pressure sores
 prone positioning for acute lung injury/atelectasis

Monitoring the Patient on MV

- Clinical exam
 - routine vital signs/routine clinical exam/chest rise equal bilaterally
 - patient ventilator synchrony/trigger
- CXR
 - confirm ETT above carina
 - understand disease process
 - identify air leak
- Monitors
 - saturation
 - ETCO₂/transcutaneous CO₂
 - BP/heart rate
 - ventilator waveforms know the basics
 - intermittent blood gases
 - capillary/venous/arterial

Capnography

- **D**isplacement
- Obstruction
- Pneumothorax
- Equipment

- Disconnect from ventilator
 - attach to manual ventilator and manually ventilate with 100% high flow oxygen
 - check ETCO₂

Assess patient using MASH

- chest Movement with bagging
- Arterial saturations?
- Skin color?
- Hemodynamic stability?

• Difficult to bag?

- tube or patient?
 - suction down ETT
 - directly check ETT placement through the cords
 - CXR

Provincial Health

Services Authority

PHYSICIAN TO PHYSICIAN CRITICAL CARE SUPPORT FROM BCCH PEDIATRIC INTENSIVE CARE UNIT (PICU)

Page 1 of 3